論文の概要: Pre-training on Synthetic Driving Data for Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2309.10121v1
- Date: Mon, 18 Sep 2023 19:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 17:35:32.039556
- Title: Pre-training on Synthetic Driving Data for Trajectory Prediction
- Title(参考訳): 軌道予測のための合成運転データの事前学習
- Authors: Yiheng Li, Seth Z. Zhao, Chenfeng Xu, Chen Tang, Chenran Li, Mingyu
Ding, Masayoshi Tomizuka, Wei Zhan
- Abstract要約: 我々は,データ可用性の制限の下で一般的な軌道予測表現を学習することの課題に取り組むことを目的としている。
我々はHD-mapのグラフ表現を利用し、ベクトル変換を適用して地図を再構成する。
我々は、拡張シーンに基づく軌道を生成するためにルールベースのモデルを用いる。
- 参考スコア(独自算出の注目度): 64.16991399882477
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accumulating substantial volumes of real-world driving data proves pivotal in
the realm of trajectory forecasting for autonomous driving. Given the heavy
reliance of current trajectory forecasting models on data-driven methodologies,
we aim to tackle the challenge of learning general trajectory forecasting
representations under limited data availability. We propose to augment both HD
maps and trajectories and apply pre-training strategies on top of them.
Specifically, we take advantage of graph representations of HD-map and apply
vector transformations to reshape the maps, to easily enrich the limited number
of scenes. Additionally, we employ a rule-based model to generate trajectories
based on augmented scenes; thus enlarging the trajectories beyond the collected
real ones. To foster the learning of general representations within this
augmented dataset, we comprehensively explore the different pre-training
strategies, including extending the concept of a Masked AutoEncoder (MAE) for
trajectory forecasting. Extensive experiments demonstrate the effectiveness of
our data expansion and pre-training strategies, which outperform the baseline
prediction model by large margins, e.g. 5.04\%, 3.84\% and 8.30\% in terms of
$MR_6$, $minADE_6$ and $minFDE_6$.
- Abstract(参考訳): 大量の実世界の運転データを蓄積することは、自動運転の軌道予測の領域において重要な意味を持つ。
データ駆動型手法による現在の軌道予測モデルに大きく依存していることを踏まえ、データ可用性の限界の下で一般的な軌道予測表現を学習することの課題に取り組むことを目的とする。
hdマップとトラジェクタの両方を強化し,その上に事前学習戦略を適用することを提案する。
具体的には,HD-mapのグラフ表現を利用してベクトル変換を適用して地図を再構成し,限られたシーン数を容易に拡張する。
さらに,ルールベースモデルを用いて,拡張シーンに基づくトラジェクトリを生成することにより,実際のトラジェクトリ以上のトラジェクトリを拡大する。
この拡張データセット内の一般的な表現の学習を促進するため、軌道予測のためのMasked AutoEncoder(MAE)の概念の拡張など、さまざまな事前学習戦略を網羅的に検討する。
データ拡張と事前学習戦略の有効性を実証し,MR_6$,$minADE_6$,$minFDE_6$といった条件で5.04\%,3.84\%,8.30\%の大きなマージンでベースライン予測モデルを上回った。
関連論文リスト
- Data-efficient Trajectory Prediction via Coreset Selection [4.682090083225856]
軌道予測モデルの訓練には2つの方法がある。
簡単ミーム駆動のシナリオがデータセットを圧倒的に支配することが多い。
コアセット選択に基づく新しいデータ効率訓練手法を提案する。
論文 参考訳(メタデータ) (2024-09-25T22:00:11Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
我々のソリューションはArgoverse 2 end-to-end Forecasting Challengeで63.82 mAPfでランクインした。
私たちは、知覚から予測までエンドツーエンドのトレーニングを通じて、このタスクに取り組む現在のトレンドから離れ、代わりにモジュラーアプローチを使用します。
私たちは、昨年の優勝者より+17.1ポイント、今年の優勝者より+13.3ポイント、予測結果を+17.1ポイント上回る。
論文 参考訳(メタデータ) (2024-06-12T11:50:51Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
トレーニング-ファインタニングアプローチは、さまざまな下流データセットとタスクをまたいだトレーニング済みのバックボーンを微調整することで、ラベル付けの負担を軽減することができる。
本稿では, 一般表現学習が, 占領予測のタスクを通じて達成できることを, 初めて示す。
本研究は,LiDAR 点の理解を促進するとともに,LiDAR の事前訓練における今後の進歩の道を開くことを目的とする。
論文 参考訳(メタデータ) (2023-09-19T11:13:01Z) - Interaction-Aware Personalized Vehicle Trajectory Prediction Using
Temporal Graph Neural Networks [8.209194305630229]
既存の手法は主に大規模なデータセットからの一般的な軌道予測に依存している。
本稿では,時間グラフニューラルネットワークを組み込んだ対話型車両軌跡予測手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T20:20:26Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
軌道予測のための自己教師付き事前学習方式であるPreTraMを提案する。
1) トラジェクティブ・マップ・コントラクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)の2つのパートから構成される。
AgentFormerやTrajectron++といった一般的なベースラインに加えて、PreTraMは、挑戦的なnuScenesデータセット上で、FDE-10でパフォーマンスを5.5%と6.9%向上させる。
論文 参考訳(メタデータ) (2022-04-21T23:01:21Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - The Importance of Balanced Data Sets: Analyzing a Vehicle Trajectory
Prediction Model based on Neural Networks and Distributed Representations [0.0]
車両軌道予測におけるトレーニングデータの構成について検討する。
本研究では, 意味ベクトル表現を用いたモデルが, 適切なデータセットで訓練した場合に, 数値モデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-09-30T20:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。