論文の概要: Positive and Risky Message Assessment for Music Products
- arxiv url: http://arxiv.org/abs/2309.10182v1
- Date: Mon, 18 Sep 2023 22:20:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 17:17:16.254094
- Title: Positive and Risky Message Assessment for Music Products
- Title(参考訳): 音楽製品に対するポジティブ・リスクメッセージ評価
- Authors: Yigeng Zhang, Mahsa Shafaei, Fabio Gonzalez, Thamar Solorio
- Abstract要約: まず,マルチアングル・マルチレベル音楽コンテンツ評価のベンチマークを作成し,この問題を解決するために,オーディナリティ強化による効果的なマルチタスク予測モデルを提案する。
提案手法は,タスク特化度が高いだけでなく,複数の側面を同時に評価できることを示す。
- 参考スコア(独自算出の注目度): 6.856683556201505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel research problem: assessing positive and
risky messages from music products. We first establish a benchmark for
multi-angle multi-level music content assessment and then present an effective
multi-task prediction model with ordinality-enforcement to solve this problem.
Our result shows the proposed method not only significantly outperforms strong
task-specific counterparts but can concurrently evaluate multiple aspects.
- Abstract(参考訳): 本研究では,音楽製品からのポジティブでリスクの高いメッセージの評価という,新たな研究課題を提案する。
まず,マルチアングル・マルチレベル音楽コンテンツアセスメントのためのベンチマークを構築し,その解法としてordinality-enforcementを用いた効果的なマルチタスク予測モデルを提案する。
提案手法は,タスク特化度が高いだけでなく,複数の側面を同時に評価できることを示す。
関連論文リスト
- Can Large Audio-Language Models Truly Hear? Tackling Hallucinations with Multi-Task Assessment and Stepwise Audio Reasoning [55.2480439325792]
大規模な音声言語モデル (LALM) は、音声および音声情報の理解と推論に優れた能力を示している。
これらのモデルは、既存の音のイベントを幻覚させ、音のイベントの順序を誤認し、誤って音源を帰属させるなど、依然として課題に直面している。
論文 参考訳(メタデータ) (2024-10-21T15:55:27Z) - MetaSumPerceiver: Multimodal Multi-Document Evidence Summarization for Fact-Checking [0.283600654802951]
マルチモーダルデータセットからファクトチェックに有用なクレーム固有の要約を生成するために設計された要約モデルを提案する。
任意の長さの複数のモードから入力を処理できる動的知覚モデルを提案する。
提案手法は,MOCHEGデータセットのクレーム検証タスクにおいて,SOTAアプローチを4.6%向上させる。
論文 参考訳(メタデータ) (2024-07-18T01:33:20Z) - Narrative Action Evaluation with Prompt-Guided Multimodal Interaction [60.281405999483]
ナラティブ・アクション・アセスメント(NAE)は、行動の実行を評価する専門家のコメントを作成することを目的としている。
NAEは、物語の柔軟性と評価の厳格さの両方を必要とするため、より困難なタスクです。
本稿では,様々な情報モダリティ間のインタラクションを容易にするための,プロンプト誘導型マルチモーダルインタラクションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-22T17:55:07Z) - A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
音声処理ユニバーサルパフォーマンスベンチマーク(SUPERB)を構築し,基礎モデルパラダイムの有効性について検討する。
凍結基盤モデルを用いてSUPERBにおける音声処理タスクに対処する統合マルチタスクフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-15T00:03:16Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Dynamic-SUPERB: Towards A Dynamic, Collaborative, and Comprehensive Instruction-Tuning Benchmark for Speech [107.81472531864195]
テキスト言語モデルは、よく整形された命令が与えられたときに、目に見えないタスクに一般化する際、顕著なゼロショット能力を示している。
ゼロショット方式で複数のタスクを実行するための命令チューニングを活用できるユニバーサル音声モデルを構築するためのベンチマークであるDynamic-SUPERBを提案する。
論文 参考訳(メタデータ) (2023-09-18T06:43:30Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
大量のテキストデータをオンラインで分析するために、機械学習と自然言語処理アルゴリズムがデプロイされている。
本研究では,顧客レビューに特化して用いられる5つのトピックモデリング手法について検討・比較する。
以上の結果から,BERTopicはより意味のあるトピックを抽出し,良好な結果を得ることができた。
論文 参考訳(メタデータ) (2023-08-19T08:18:04Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Reinforcement Guided Multi-Task Learning Framework for Low-Resource
Stereotype Detection [3.7223111129285096]
ステレオタイプ検出」データセットは主に、大規模な事前学習言語モデルに対する診断アプローチを採用している。
信頼できるデータセットに注釈をつけるには、テキストでステレオタイプがどのように現れるかという微妙なニュアンスを正確に理解する必要がある。
我々は「ステレオタイプ検出」における経験的性能を改善するために、データ豊富な隣接タスクの多元性を活用するマルチタスクモデルを提案する。
論文 参考訳(メタデータ) (2022-03-27T17:16:11Z) - Multi-task Learning of Negation and Speculation for Targeted Sentiment
Classification [15.85111852764517]
対象の感情モデルが言語現象、特に否定や憶測に対して堅牢ではないことを示す。
本稿では,否定や投機的スコープ検出など,構文的・意味的補助的タスクからの情報を組み込むマルチタスク学習手法を提案する。
否定的サンプルと投機的サンプルのモデル性能を評価するために、2つの課題データセットを作成します。
論文 参考訳(メタデータ) (2020-10-16T11:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。