Drive as You Speak: Enabling Human-Like Interaction with Large Language
Models in Autonomous Vehicles
- URL: http://arxiv.org/abs/2309.10228v1
- Date: Tue, 19 Sep 2023 00:47:13 GMT
- Title: Drive as You Speak: Enabling Human-Like Interaction with Large Language
Models in Autonomous Vehicles
- Authors: Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye and Ziran Wang
- Abstract summary: We present a novel framework that leverages Large Language Models (LLMs) to enhance autonomous vehicles' decision-making processes.
The proposed framework holds the potential to revolutionize the way autonomous vehicles operate, offering personalized assistance, continuous learning, and transparent decision-making.
- Score: 13.102404404559428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The future of autonomous vehicles lies in the convergence of human-centric
design and advanced AI capabilities. Autonomous vehicles of the future will not
only transport passengers but also interact and adapt to their desires, making
the journey comfortable, efficient, and pleasant. In this paper, we present a
novel framework that leverages Large Language Models (LLMs) to enhance
autonomous vehicles' decision-making processes. By integrating LLMs' natural
language capabilities and contextual understanding, specialized tools usage,
synergizing reasoning, and acting with various modules on autonomous vehicles,
this framework aims to seamlessly integrate the advanced language and reasoning
capabilities of LLMs into autonomous vehicles. The proposed framework holds the
potential to revolutionize the way autonomous vehicles operate, offering
personalized assistance, continuous learning, and transparent decision-making,
ultimately contributing to safer and more efficient autonomous driving
technologies.
Related papers
- Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment [15.52530518623987]
Large Language Models (LLMs) have the potential to enhance various aspects of autonomous driving systems.
This paper introduces novel concepts and approaches to designing LLMs for autonomous driving (LLM4AD)
arXiv Detail & Related papers (2024-10-20T04:36:19Z) - VLP: Vision Language Planning for Autonomous Driving [52.640371249017335]
This paper presents a novel Vision-Language-Planning framework that exploits language models to bridge the gap between linguistic understanding and autonomous driving.
It achieves state-of-the-art end-to-end planning performance on the NuScenes dataset by achieving 35.9% and 60.5% reduction in terms of average L2 error and collision rates, respectively.
arXiv Detail & Related papers (2024-01-10T23:00:40Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Applications of Large Scale Foundation Models for Autonomous Driving [22.651585322658686]
Large language models (LLMs) and chat systems, such as chatGPT and PaLM, emerge and rapidly become a promising direction to achieve artificial general intelligence (AGI) in natural language processing (NLP)
In this paper, we investigate the techniques of foundation models and LLMs applied for autonomous driving, categorized as simulation, world model, data annotation and planning or E2E solutions etc.
arXiv Detail & Related papers (2023-11-20T19:45:27Z) - A Language Agent for Autonomous Driving [31.359413767191608]
We propose a paradigm shift to integrate human-like intelligence into autonomous driving systems.
Our approach, termed Agent-Driver, transforms the traditional autonomous driving pipeline by introducing a versatile tool library.
Powered by Large Language Models (LLMs), our Agent-Driver is endowed with intuitive common sense and robust reasoning capabilities.
arXiv Detail & Related papers (2023-11-17T18:59:56Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
We propose a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles.
Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks.
We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands.
arXiv Detail & Related papers (2023-10-12T04:56:01Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.