Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment
- URL: http://arxiv.org/abs/2410.15281v1
- Date: Sun, 20 Oct 2024 04:36:19 GMT
- Title: Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment
- Authors: Can Cui, Yunsheng Ma, Zichong Yang, Yupeng Zhou, Peiran Liu, Juanwu Lu, Lingxi Li, Yaobin Chen, Jitesh H. Panchal, Amr Abdelraouf, Rohit Gupta, Kyungtae Han, Ziran Wang,
- Abstract summary: Large Language Models (LLMs) have the potential to enhance various aspects of autonomous driving systems.
This paper introduces novel concepts and approaches to designing LLMs for autonomous driving (LLM4AD)
- Score: 15.52530518623987
- License:
- Abstract: With the broader usage and highly successful development of Large Language Models (LLMs), there has been a growth of interest and demand for applying LLMs to autonomous driving technology. Driven by their natural language understanding and reasoning ability, LLMs have the potential to enhance various aspects of autonomous driving systems, from perception and scene understanding to language interaction and decision-making. In this paper, we first introduce novel concepts and approaches to designing LLMs for autonomous driving (LLM4AD). Then, we propose a comprehensive benchmark for evaluating the instruction-following abilities of LLMs within the autonomous driving domain. Furthermore, we conduct a series of experiments on both simulation and real-world vehicle platforms, thoroughly evaluating the performance and potential of our LLM4AD systems. Our research highlights the significant potential of LLMs to enhance various aspects of autonomous vehicle technology, from perception and scene understanding to language interaction and decision-making.
Related papers
- DriveMLLM: A Benchmark for Spatial Understanding with Multimodal Large Language Models in Autonomous Driving [13.115027801151484]
We introduce DriveMLLM, a benchmark designed to evaluate the spatial understanding capabilities of multimodal large language models (MLLMs) in autonomous driving.
DriveMLLM includes 880 front-facing camera images and introduces both absolute and relative spatial reasoning tasks, accompanied by linguistically diverse natural language questions.
We evaluate several state-of-the-art MLLMs on DriveMLLM, and our results reveal the limitations of current models in understanding complex spatial relationships in driving contexts.
arXiv Detail & Related papers (2024-11-20T08:14:01Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - Evaluation of Large Language Models for Decision Making in Autonomous
Driving [4.271294502084542]
One strategy of using Large Language Models (LLMs) for autonomous driving involves inputting surrounding objects as text prompts to the LLMs.
When using LLMs for such purposes, capabilities such as spatial recognition and planning are essential.
This study quantitatively evaluated these two abilities of LLMs in the context of autonomous driving.
arXiv Detail & Related papers (2023-12-11T12:56:40Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - A Survey on Multimodal Large Language Models for Autonomous Driving [31.614730391949657]
Multimodal AI systems benefiting from large models have the potential to equally perceive the real world, make decisions, and control tools as humans.
Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors to apply in Multimodal Large Language Models driving systems.
arXiv Detail & Related papers (2023-11-21T03:32:01Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
We propose a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles.
Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks.
We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands.
arXiv Detail & Related papers (2023-10-12T04:56:01Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model [84.29836263441136]
This study introduces DriveGPT4, a novel interpretable end-to-end autonomous driving system based on multimodal large language models (MLLMs)
DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users.
arXiv Detail & Related papers (2023-10-02T17:59:52Z) - DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models [30.23228092898916]
We propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge.
Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability.
To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles.
arXiv Detail & Related papers (2023-09-28T09:41:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.