Metastatic Breast Cancer Prognostication Through Multimodal Integration
of Dimensionality Reduction Algorithms and Classification Algorithms
- URL: http://arxiv.org/abs/2309.10324v1
- Date: Tue, 19 Sep 2023 05:12:02 GMT
- Title: Metastatic Breast Cancer Prognostication Through Multimodal Integration
of Dimensionality Reduction Algorithms and Classification Algorithms
- Authors: Bliss Singhal, Fnu Pooja
- Abstract summary: The study focuses on the detection of metastatic cancer using Machine learning (ML)
The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbors algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) is a branch of Artificial Intelligence (AI) where
computers analyze data and find patterns in the data. The study focuses on the
detection of metastatic cancer using ML. Metastatic cancer is the point where
the cancer has spread to other parts of the body and is the cause of
approximately 90% of cancer related deaths. Normally, pathologists spend hours
each day to manually classify whether tumors are benign or malignant. This
tedious task contributes to mislabeling metastasis being over 60% of time and
emphasizes the importance to be aware of human error, and other inefficiencies.
ML is a good candidate to improve the correct identification of metastatic
cancer saving thousands of lives and can also improve the speed and efficiency
of the process thereby taking less resources and time. So far, deep learning
methodology of AI has been used in the research to detect cancer. This study is
a novel approach to determine the potential of using preprocessing algorithms
combined with classification algorithms in detecting metastatic cancer. The
study used two preprocessing algorithms: principal component analysis (PCA) and
the genetic algorithm to reduce the dimensionality of the dataset, and then
used three classification algorithms: logistic regression, decision tree
classifier, and k-nearest neighbors to detect metastatic cancer in the
pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline
comprising of PCA, the genetic algorithm, and the k-nearest neighbors
algorithm, suggesting that preprocessing and classification algorithms have
great potential for detecting metastatic cancer.
Related papers
- Biomarker based Cancer Classification using an Ensemble with Pre-trained Models [2.2436844508175224]
We propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks.
We leverage a meta-trained Hyperfast model for classifying cancer, accomplishing the highest AUC of 0.9929.
We also propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks, achieving an incremental increase in accuracy (0.9464)
arXiv Detail & Related papers (2024-06-14T14:43:59Z) - Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example [40.3927727959038]
This paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images.
It enables the rapid and automatic classification of pathological images into benign and malignant groups.
It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
arXiv Detail & Related papers (2024-04-12T07:08:05Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - A Combined PCA-MLP Network for Early Breast Cancer Detection [0.0]
We have studied different machine learning algorithms to detect whether a patient is likely to face breast cancer or not.
Our 4 layers-PCA network has obtained the best accuracy of 100% with a mean of 90.48% on the BCCD dataset.
arXiv Detail & Related papers (2022-06-18T06:17:40Z) - Gene selection from microarray expression data: A Multi-objective PSO
with adaptive K-nearest neighborhood [0.0]
This paper deals with the classification problem of human cancer diseases by using gene expression data.
It is presented a new methodology to analyze microarray datasets and efficiently classify cancer diseases.
arXiv Detail & Related papers (2022-05-27T04:22:10Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
We introduce a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions.
We firstly test our proposed method on a private dense mammogram dataset.
Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer.
arXiv Detail & Related papers (2020-03-01T09:04:24Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.