Stan: Small tumor-aware network for breast ultrasound image segmentation
- URL: http://arxiv.org/abs/2002.01034v1
- Date: Mon, 3 Feb 2020 22:25:01 GMT
- Title: Stan: Small tumor-aware network for breast ultrasound image segmentation
- Authors: Bryar Shareef, Min Xian, Aleksandar Vakanski
- Abstract summary: We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast tumor segmentation provides accurate tumor boundary, and serves as a
key step toward further cancer quantification. Although deep learning-based
approaches have been proposed and achieved promising results, existing
approaches have difficulty in detecting small breast tumors. The capacity to
detecting small tumors is particularly important in finding early stage cancers
using computer-aided diagnosis (CAD) systems. In this paper, we propose a novel
deep learning architecture called Small Tumor-Aware Network (STAN), to improve
the performance of segmenting tumors with different size. The new architecture
integrates both rich context information and high-resolution image features. We
validate the proposed approach using seven quantitative metrics on two public
breast ultrasound datasets. The proposed approach outperformed the
state-of-the-art approaches in segmenting small breast tumors. Index
Related papers
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Multilevel Perception Boundary-guided Network for Breast Lesion
Segmentation in Ultrasound Images [9.252383213566947]
We propose a PBNet composed by a multilevel global perception module (MGPM) and a boundary guided module (BGM) to segment breast tumors from ultrasound images.
In MGPM, the long-range spatial dependence between the voxels in a single level feature maps are modeled, and then the multilevel semantic information is fused.
In BGM, the tumor boundaries are extracted from the high-level semantic maps using the dilation and erosion effects of max pooling.
arXiv Detail & Related papers (2023-10-23T07:21:02Z) - Cross-attention-based saliency inference for predicting cancer
metastasis on whole slide images [3.7282630026096597]
Cross-attention-based salient instance inference MIL (CASiiMIL) is proposed to identify breast cancer lymph node micro-metastasis on whole slide images.
We introduce a negative representation learning algorithm to facilitate the learning of saliency-informed attention weights for improved sensitivity on tumor WSIs.
The proposed model outperforms the state-of-the-art MIL methods on two popular tumor metastasis detection datasets.
arXiv Detail & Related papers (2023-09-18T00:56:19Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation [0.0]
We propose a novel deep neural network architecture, namely Enhanced Small Tumor-Aware Network (ESTAN) to accurately segment breast tumors.
ESTAN introduces two encoders to extract and fuse image context information at different scales and utilizes row-column-wise kernels in the encoder to adapt to breast anatomy.
arXiv Detail & Related papers (2020-09-27T16:42:59Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.