論文の概要: Sample-adaptive Augmentation for Point Cloud Recognition Against
Real-world Corruptions
- arxiv url: http://arxiv.org/abs/2309.10431v1
- Date: Tue, 19 Sep 2023 08:46:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 15:34:53.673002
- Title: Sample-adaptive Augmentation for Point Cloud Recognition Against
Real-world Corruptions
- Title(参考訳): 実世界の腐敗に対するポイントクラウド認識のためのサンプル適応拡張
- Authors: Jie Wang, Lihe Ding, Tingfa Xu, Shaocong Dong, Xinli Xu, Long Bai,
Jianan Li
- Abstract要約: 本稿では,サンプルの構造に基づくサンプル適応変換をAdaptPointと命名する手法を提案する。
判別器は、原データ分布から逸脱する過度な腐敗の発生を防止するために用いられる。
実験の結果,ModelNet-C,ScanObjectNN-C,ShapeNet-C など,複数の汚損評価ベンチマークにおいて,最先端の結果が得られた。
- 参考スコア(独自算出の注目度): 20.95456179904285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust 3D perception under corruption has become an essential task for the
realm of 3D vision. While current data augmentation techniques usually perform
random transformations on all point cloud objects in an offline way and ignore
the structure of the samples, resulting in over-or-under enhancement. In this
work, we propose an alternative to make sample-adaptive transformations based
on the structure of the sample to cope with potential corruption via an
auto-augmentation framework, named as AdaptPoint. Specially, we leverage a
imitator, consisting of a Deformation Controller and a Mask Controller,
respectively in charge of predicting deformation parameters and producing a
per-point mask, based on the intrinsic structural information of the input
point cloud, and then conduct corruption simulations on top. Then a
discriminator is utilized to prevent the generation of excessive corruption
that deviates from the original data distribution. In addition, a
perception-guidance feedback mechanism is incorporated to guide the generation
of samples with appropriate difficulty level. Furthermore, to address the
paucity of real-world corrupted point cloud, we also introduce a new dataset
ScanObjectNN-C, that exhibits greater similarity to actual data in real-world
environments, especially when contrasted with preceding CAD datasets.
Experiments show that our method achieves state-of-the-art results on multiple
corruption benchmarks, including ModelNet-C, our ScanObjectNN-C, and
ShapeNet-C.
- Abstract(参考訳): 汚職下でのロバストな3D知覚は、3Dビジョンの領域にとって不可欠な課題となっている。
現在のデータ拡張技術は、通常、すべてのポイントクラウドオブジェクトに対してオフラインでランダムな変換を実行し、サンプルの構造を無視し、オーバー・オー・アンダー・エンハンスメントをもたらす。
本研究では、サンプルの構造に基づいてサンプル適応変換を行い、自動拡張フレームワークであるAdaptPointを用いて潜在的な腐敗に対処する手法を提案する。
特に,入力点雲の固有構造情報に基づいて変形パラメータを予測し,ポイント毎マスクを生成するための変形制御器とマスク制御器からなる模倣器を利用し,その上に腐敗シミュレーションを行う。
そして、判別器を用いて、元のデータ分布から逸脱する過度な腐敗の発生を防止する。
また、適切な難易度でサンプルを生成するための知覚誘導フィードバック機構が組み込まれている。
さらに, 実環境における実際のデータ, 特に先行するCADデータセットと対比した場合に, 実環境における実際のデータとの類似性を示す新しいデータセットScanObjectNN-Cを導入する。
実験の結果,ModelNet-C,ScanObjectNN-C,ShapeNet-C など,複数の汚損評価ベンチマークにおいて,最先端の結果が得られた。
関連論文リスト
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D視覚化技術は、私たちがデジタルコンテンツと対話する方法を根本的に変えてきた。
ポイントクラウドの大規模データサイズは、データ圧縮において大きな課題を呈している。
そこで我々はPCACと差別化可能なレンダリングをシームレスに統合するエンドツーエンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T16:12:51Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - PCV: A Point Cloud-Based Network Verifier [8.239631885389382]
本稿では3Dポイントネットの状態をうまく処理できるポイントクラウドベースのネットワーク検証について述べる。
モデル精度と特性係数への影響を計算し、小さな摂動状態に対するPointNetネットワークのロバスト性をテストする。
論文 参考訳(メタデータ) (2023-01-27T15:58:54Z) - Point-DAE: Denoising Autoencoders for Self-supervised Point Cloud Learning [54.51061298877896]
我々は、より一般的なポイントクラウド学習用オートエンコーダ(Point-DAE)について、マスキング以外の多くの種類の汚職を調査して検討する。
具体的には、特定の破損を入力としてポイントクラウドを分解し、エンコーダ・デコーダモデルを学び、元のポイントクラウドを破損したバージョンから再構築する。
論文 参考訳(メタデータ) (2022-11-13T08:02:03Z) - Benchmarking Robustness of 3D Point Cloud Recognition Against Common
Corruptions [38.89370166717221]
筆者らは,3Dポイントクラウドの破壊堅牢性に関する最初の総合的なベンチマークであるModelNet40-Cを提案する。
評価の結果,モデルNet40 とモデルNet40-C では,最先端モデル (SOTA) では大きな差がみられた。
適切なトレーニングレシピを持つTransformerベースのアーキテクチャは、強力な堅牢性を実現する。
論文 参考訳(メタデータ) (2022-01-28T18:01:42Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
安全クリティカルな環境では、アウト・オブ・ディストリビューションとロングテールサンプルの堅牢性は、危険な問題を回避するのに不可欠である。
トレーニング中の変形点雲を考慮した3次元物体検出器の領域外データへの一般化を著しく改善する。
我々は、リアルに損傷を受けた稀な車の合成データセットであるCrashDを提案し、共有する。
論文 参考訳(メタデータ) (2021-12-09T08:50:54Z) - CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for
3D Point Clouds [48.22275177437932]
本稿では,3次元形状間の密接な対応を点雲形式で計算する問題に対処する。
CorrNet3Dは、教師なしでエンドツーエンドのディープラーニングベースのフレームワークです。
論文 参考訳(メタデータ) (2020-12-31T14:55:51Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
本稿では,高密度物体表面を直接点雲から検出・再構成するRfD-Netを提案する。
インスタンス再構成を大域的オブジェクトローカライゼーションと局所形状予測に分離する。
我々のアプローチは、オブジェクト再構成において、最先端の技術を一貫して上回り、メッシュIoUの11以上を改善します。
論文 参考訳(メタデータ) (2020-11-30T12:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。