SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations
- URL: http://arxiv.org/abs/2309.10527v3
- Date: Thu, 25 Jul 2024 11:26:49 GMT
- Title: SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations
- Authors: Xiangchao Yan, Runjian Chen, Bo Zhang, Hancheng Ye, Renqiu Xia, Jiakang Yuan, Hongbin Zhou, Xinyu Cai, Botian Shi, Wenqi Shao, Ping Luo, Yu Qiao, Tao Chen, Junchi Yan,
- Abstract summary: Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
- Score: 76.45009891152178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Annotating 3D LiDAR point clouds for perception tasks is fundamental for many applications e.g., autonomous driving, yet it still remains notoriously labor-intensive. Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks. In this paper, we propose SPOT, namely Scalable Pre-training via Occupancy prediction for learning Transferable 3D representations under such a label-efficient fine-tuning paradigm. SPOT achieves effectiveness on various public datasets with different downstream tasks, showcasing its general representation power, cross-domain robustness and data scalability which are three key factors for real-world application. Specifically, we both theoretically and empirically show, for the first time, that general representations learning can be achieved through the task of occupancy prediction. Then, to address the domain gap caused by different LiDAR sensors and annotation methods, we develop a beam re-sampling technique for point cloud augmentation combined with class-balancing strategy. Furthermore, scalable pre-training is observed, that is, the downstream performance across all the experiments gets better with more pre-training data. Additionally, such pre-training strategy also remains compatible with unlabeled data. The hope is that our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
Related papers
- 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing pretraining objectives.
To further boost learning efficiency, we incorporate a plug-and-play view consistency module that enhances alignment of the knowledge distilled from camera views.
arXiv Detail & Related papers (2024-07-08T17:59:54Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Improving 3D Occupancy Prediction through Class-balancing Loss and Multi-scale Representation [7.651064601670273]
3D environment recognition is essential for autonomous driving systems.
Birds-Eye-View(BEV)-based perception has achieved the SOTA performance for this task.
We introduce a novel UNet-like Multi-scale Occupancy Head module to relieve this issue.
arXiv Detail & Related papers (2024-05-25T07:13:13Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
Point Prompt Training is a novel framework for multi-dataset synergistic learning in the context of 3D representation learning.
It can overcome the negative transfer associated with synergistic learning and produce generalizable representations.
It achieves state-of-the-art performance on each dataset using a single weight-shared model with supervised multi-dataset training.
arXiv Detail & Related papers (2023-08-18T17:59:57Z) - Consecutive Pretraining: A Knowledge Transfer Learning Strategy with
Relevant Unlabeled Data for Remote Sensing Domain [25.84756140221655]
ConSecutive PreTraining (CSPT) is proposed based on the idea of not stopping pretraining in natural language processing (NLP)
The proposed CSPT also can release the huge potential of unlabeled data for task-aware model training.
The results show that by utilizing the proposed CSPT for task-aware model training, almost all downstream tasks in RSD can outperform the previous method of supervised pretraining-then-fine-tuning.
arXiv Detail & Related papers (2022-07-08T12:32:09Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
In this work, we aim at facilitating research on 3D representation learning.
We measure the effect of unsupervised pre-training on a large source set of 3D scenes.
arXiv Detail & Related papers (2020-07-21T17:59:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.