Few-shot Object Detection in Remote Sensing: Lifting the Curse of
Incompletely Annotated Novel Objects
- URL: http://arxiv.org/abs/2309.10588v1
- Date: Tue, 19 Sep 2023 13:00:25 GMT
- Title: Few-shot Object Detection in Remote Sensing: Lifting the Curse of
Incompletely Annotated Novel Objects
- Authors: Fahong Zhang, Yilei Shi, Zhitong Xiong, and Xiao Xiang Zhu
- Abstract summary: We propose a self-training-based FSOD (ST-FSOD) approach to object detection.
Our proposed method outperforms the state-of-the-art in various FSOD settings by a large margin.
- Score: 23.171410277239534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection is an essential and fundamental task in computer vision and
satellite image processing. Existing deep learning methods have achieved
impressive performance thanks to the availability of large-scale annotated
datasets. Yet, in real-world applications the availability of labels is
limited. In this context, few-shot object detection (FSOD) has emerged as a
promising direction, which aims at enabling the model to detect novel objects
with only few of them annotated. However, many existing FSOD algorithms
overlook a critical issue: when an input image contains multiple novel objects
and only a subset of them are annotated, the unlabeled objects will be
considered as background during training. This can cause confusions and
severely impact the model's ability to recall novel objects. To address this
issue, we propose a self-training-based FSOD (ST-FSOD) approach, which
incorporates the self-training mechanism into the few-shot fine-tuning process.
ST-FSOD aims to enable the discovery of novel objects that are not annotated,
and take them into account during training. On the one hand, we devise a
two-branch region proposal networks (RPN) to separate the proposal extraction
of base and novel objects, On another hand, we incorporate the student-teacher
mechanism into RPN and the region of interest (RoI) head to include those
highly confident yet unlabeled targets as pseudo labels. Experimental results
demonstrate that our proposed method outperforms the state-of-the-art in
various FSOD settings by a large margin. The codes will be publicly available
at https://github.com/zhu-xlab/ST-FSOD.
Related papers
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Beyond Few-shot Object Detection: A Detailed Survey [25.465534270637523]
Researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles.
These approaches play a vital role in reducing the reliance on extensive labeled datasets.
This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task.
arXiv Detail & Related papers (2024-08-26T13:09:23Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot object detection (FSOD) methods have emerged as a solution to the limitations of classic object detection approaches.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during the FSOD training stage.
Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception of the object detection model for large objects.
arXiv Detail & Related papers (2023-08-15T02:35:59Z) - Identification of Novel Classes for Improving Few-Shot Object Detection [12.013345715187285]
Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during training to improve FSOD performance.
Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.
arXiv Detail & Related papers (2023-03-18T14:12:52Z) - Open-Set Object Detection Using Classification-free Object Proposal and
Instance-level Contrastive Learning [25.935629339091697]
Open-set object detection (OSOD) is a promising direction to handle the problem consisting of two subtasks: objects and background separation, and open-set object classification.
We present Openset RCNN to address the challenging OSOD.
We show that our Openset RCNN can endow the robot with an open-set perception ability to support robotic rearrangement tasks in cluttered environments.
arXiv Detail & Related papers (2022-11-21T15:00:04Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
We propose a probabilistic multiple instance learning approach for few-shot Common Object Localization (COL) and few-shot Weakly Supervised Object Detection (WSOD)
Our model simultaneously learns the distribution of the novel objects and localizes them via expectation-maximization steps.
Our experiments show that the proposed method, despite being simple, outperforms strong baselines in few-shot COL and WSOD, as well as large-scale WSOD tasks.
arXiv Detail & Related papers (2021-03-25T22:34:16Z) - Exploring Bottom-up and Top-down Cues with Attentive Learning for Webly
Supervised Object Detection [76.9756607002489]
We propose a novel webly supervised object detection (WebSOD) method for novel classes.
Our proposed method combines bottom-up and top-down cues for novel class detection.
We demonstrate our proposed method on PASCAL VOC dataset with three different novel/base splits.
arXiv Detail & Related papers (2020-03-22T03:11:24Z) - Progressive Object Transfer Detection [84.48927705173494]
We propose a novel Progressive Object Transfer Detection (POTD) framework.
First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure.
Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD)
arXiv Detail & Related papers (2020-02-12T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.