Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images
- URL: http://arxiv.org/abs/2403.13375v1
- Date: Wed, 20 Mar 2024 08:15:18 GMT
- Title: Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images
- Authors: Jiawei Zhou, Wuzhou Li, Yi Cao, Hongtao Cai, Xiang Li,
- Abstract summary: Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
- Score: 11.217630579076237
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing due to its ability to reduce the dependency on large amounts of annotated data. However, two challenges persist in this area: (1) axis-aligned proposals, which can result in misalignment for arbitrarily oriented objects, and (2) the scarcity of annotated data still limits the performance for unseen object categories. To address these issues, we propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC). Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects, leading to enhanced detection performance. To the best of our knowledge, we are the first to address oriented object detection in the few-shot setting for remote sensing images. To address the challenging issue of object misclassification, we introduce a supervised contrastive learning module with a dynamically updated memory bank. This module enables the use of large batches of negative samples and enhances the model's capability to learn discriminative features for unseen classes. We conduct comprehensive experiments on the DOTA and HRSC2016 datasets, and our model achieves state-of-the-art performance on the few-shot oriented object detection task. Code and pretrained models will be released.
Related papers
- Exploring Robust Features for Few-Shot Object Detection in Satellite
Imagery [17.156864650143678]
We develop a few-shot object detector based on a traditional two-stage architecture.
A large-scale pre-trained model is used to build class-reference embeddings or prototypes.
We perform evaluations on two remote sensing datasets containing challenging and rare objects.
arXiv Detail & Related papers (2024-03-08T15:20:27Z) - Few-shot Object Detection in Remote Sensing: Lifting the Curse of
Incompletely Annotated Novel Objects [23.171410277239534]
We propose a self-training-based FSOD (ST-FSOD) approach to object detection.
Our proposed method outperforms the state-of-the-art in various FSOD settings by a large margin.
arXiv Detail & Related papers (2023-09-19T13:00:25Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
This paper proposes a video object-centric model for multiple-object tracking pipelines.
It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module.
Benefited from object-centric learning, we only require sparse detection labels for object localization and feature binding.
arXiv Detail & Related papers (2023-09-01T03:34:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - USD: Unknown Sensitive Detector Empowered by Decoupled Objectness and
Segment Anything Model [14.080744645704751]
Open World Object Detection (OWOD) is a novel and challenging computer vision task.
We propose a simple yet effective learning strategy, namely Decoupled Objectness Learning (DOL), which divides the learning of these two boundaries into decoder layers.
We also introduce an Auxiliary Supervision Framework (ASF) that uses a pseudo-labeling and a soft-weighting strategies to alleviate the negative impact of noise.
arXiv Detail & Related papers (2023-06-04T06:42:09Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Robust Region Feature Synthesizer for Zero-Shot Object Detection [87.79902339984142]
We build a novel zero-shot object detection framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component.
It is the first study to carry out zero-shot object detection in remote sensing imagery.
arXiv Detail & Related papers (2022-01-01T03:09:15Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
We propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL)
Our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.
arXiv Detail & Related papers (2021-10-18T07:06:57Z) - Uncertainty-aware Joint Salient Object and Camouflaged Object Detection [43.01556978979627]
We propose a paradigm of leveraging the contradictory information to enhance the detection ability of both salient object detection and camouflaged object detection.
We introduce a similarity measure module to explicitly model the contradicting attributes of these two tasks.
Considering the uncertainty of labeling in both tasks' datasets, we propose an adversarial learning network to achieve both higher order similarity measure and network confidence estimation.
arXiv Detail & Related papers (2021-04-06T16:05:10Z) - Few-shot Object Detection on Remote Sensing Images [11.40135025181393]
We introduce a few-shot learning-based method for object detection on remote sensing images.
We build our few-shot object detection model upon YOLOv3 architecture and develop a multi-scale object detection framework.
arXiv Detail & Related papers (2020-06-14T07:18:10Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.