$O(k)$-Equivariant Dimensionality Reduction on Stiefel Manifolds
- URL: http://arxiv.org/abs/2309.10775v3
- Date: Thu, 20 Feb 2025 14:40:53 GMT
- Title: $O(k)$-Equivariant Dimensionality Reduction on Stiefel Manifolds
- Authors: Andrew Lee, Harlin Lee, Jose A. Perea, Nikolas Schonsheck, Madeleine Weinstein,
- Abstract summary: Many real-world datasets live on high-dimensional Stiefel and Grassmannian manifold, $V_k(mathbbRN)$ and $Gr(k, mathbbRN)$ respectively.
We propose an algorithm called textitPrincipal Stiefel Coordinates (PSC) to reduce data dimensionality from $ V_k(mathbbRN)$ to $V_k(mathbbRn)$ in an textit$O(k)$-equivariant manner
- Score: 2.0818404738530525
- License:
- Abstract: Many real-world datasets live on high-dimensional Stiefel and Grassmannian manifolds, $V_k(\mathbb{R}^N)$ and $Gr(k, \mathbb{R}^N)$ respectively, and benefit from projection onto lower-dimensional Stiefel and Grassmannian manifolds. In this work, we propose an algorithm called \textit{Principal Stiefel Coordinates (PSC)} to reduce data dimensionality from $ V_k(\mathbb{R}^N)$ to $V_k(\mathbb{R}^n)$ in an \textit{$O(k)$-equivariant} manner ($k \leq n \ll N$). We begin by observing that each element $\alpha \in V_n(\mathbb{R}^N)$ defines an isometric embedding of $V_k(\mathbb{R}^n)$ into $V_k(\mathbb{R}^N)$. Next, we describe two ways of finding a suitable embedding map $\alpha$: one via an extension of principal component analysis ($\alpha_{PCA}$), and one that further minimizes data fit error using gradient descent ($\alpha_{GD}$). Then, we define a continuous and $O(k)$-equivariant map $\pi_\alpha$ that acts as a "closest point operator" to project the data onto the image of $V_k(\mathbb{R}^n)$ in $V_k(\mathbb{R}^N)$ under the embedding determined by $\alpha$, while minimizing distortion. Because this dimensionality reduction is $O(k)$-equivariant, these results extend to Grassmannian manifolds as well. Lastly, we show that $\pi_{\alpha_{PCA}}$ globally minimizes projection error in a noiseless setting, while $\pi_{\alpha_{GD}}$ achieves a meaningfully different and improved outcome when the data does not lie exactly on the image of a linearly embedded lower-dimensional Stiefel manifold as above. Multiple numerical experiments using synthetic and real-world data are performed.
Related papers
- Conditional regression for the Nonlinear Single-Variable Model [4.565636963872865]
We consider a model $F(X):=f(Pi_gamma):mathbbRdto[0,rmlen_gamma]$ where $Pi_gamma: [0,rmlen_gamma]tomathbbRd$ and $f:[0,rmlen_gamma]tomathbbR1$.
We propose a nonparametric estimator, based on conditional regression, and show that it can achieve the $one$-dimensional optimal min-max rate
arXiv Detail & Related papers (2024-11-14T18:53:51Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - An Over-parameterized Exponential Regression [18.57735939471469]
Recent developments in the field of Large Language Models (LLMs) have sparked interest in the use of exponential activation functions.
We define the neural function $F: mathbbRd times m times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd
arXiv Detail & Related papers (2023-03-29T07:29:07Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Deep Learning in High Dimension: Neural Network Approximation of
Analytic Functions in $L^2(\mathbb{R}^d,\gamma_d)$ [0.0]
We prove expression rates for analytic functions $f:mathbbRdtomathbbR$ in the norm of $L2(mathbbRd,gamma_d)$.
We consider in particular ReLU and ReLU$k$ activations for integer $kgeq 2$.
As an application, we prove expression rate bounds of deep ReLU-NNs for response surfaces of elliptic PDEs with log-Gaussian random field inputs.
arXiv Detail & Related papers (2021-11-13T09:54:32Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - A Canonical Transform for Strengthening the Local $L^p$-Type Universal
Approximation Property [4.18804572788063]
$Lp$-type universal approximation theorems guarantee that a given machine learning model class $mathscrFsubseteq C(mathbbRd,mathbbRD)$ is dense in $Lp_mu(mathbbRd,mathbbRD)$.
This paper proposes a generic solution to this approximation theoretic problem by introducing a canonical transformation which "upgrades $mathscrF$'s approximation property"
arXiv Detail & Related papers (2020-06-24T17:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.