Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit
- URL: http://arxiv.org/abs/2406.01581v1
- Date: Mon, 3 Jun 2024 17:56:58 GMT
- Title: Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit
- Authors: Jason D. Lee, Kazusato Oko, Taiji Suzuki, Denny Wu,
- Abstract summary: We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
- Score: 75.4661041626338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of gradient descent learning of a single-index target function $f_*(\boldsymbol{x}) = \textstyle\sigma_*\left(\langle\boldsymbol{x},\boldsymbol{\theta}\rangle\right)$ under isotropic Gaussian data in $\mathbb{R}^d$, where the link function $\sigma_*:\mathbb{R}\to\mathbb{R}$ is an unknown degree $q$ polynomial with information exponent $p$ (defined as the lowest degree in the Hermite expansion). Prior works showed that gradient-based training of neural networks can learn this target with $n\gtrsim d^{\Theta(p)}$ samples, and such statistical complexity is predicted to be necessary by the correlational statistical query lower bound. Surprisingly, we prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary polynomial link function with a sample and runtime complexity of $n \asymp T \asymp C(q) \cdot d\mathrm{polylog} d$, where constant $C(q)$ only depends on the degree of $\sigma_*$, regardless of information exponent; this dimension dependence matches the information theoretic limit up to polylogarithmic factors. Core to our analysis is the reuse of minibatch in the gradient computation, which gives rise to higher-order information beyond correlational queries.
Related papers
- Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
A single-index model (SIM) is a function of the form $sigma(mathbfwast cdot mathbfx)$, where $sigma: mathbbR to mathbbR$ is a known link function and $mathbfwast$ is a hidden unit vector.
We show that a proper learner attains $L2$-error of $O(mathrmOPT)+epsilon$, where $
arXiv Detail & Related papers (2024-11-08T17:10:38Z) - Near-Optimal and Tractable Estimation under Shift-Invariance [0.21756081703275998]
Class of all such signals is but extremely rich: it contains all exponential oscillations over $mathbbCn$ with total degree $s$.
We show that the statistical complexity of this class, as measured by the radius squared minimax frequencies of the $(delta)$-confidence $ell$-ball, is nearly the same as for the class of $s$-sparse signals, namely $Oleft(slog(en) + log(delta-1)right) cdot log(en/s)
arXiv Detail & Related papers (2024-11-05T18:11:23Z) - Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations [40.77319247558742]
We study the computational complexity of learning a target function $f_*:mathbbRdtomathbbR$ with additive structure.
We prove that a large subset of $f_*$ can be efficiently learned by gradient training of a two-layer neural network.
arXiv Detail & Related papers (2024-06-17T17:59:17Z) - Learning Hierarchical Polynomials with Three-Layer Neural Networks [56.71223169861528]
We study the problem of learning hierarchical functions over the standard Gaussian distribution with three-layer neural networks.
For a large subclass of degree $k$s $p$, a three-layer neural network trained via layerwise gradientp descent on the square loss learns the target $h$ up to vanishing test error.
This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
arXiv Detail & Related papers (2023-11-23T02:19:32Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Neural Networks Efficiently Learn Low-Dimensional Representations with
SGD [22.703825902761405]
We show that SGD-trained ReLU NNs can learn a single-index target of the form $y=f(langleboldsymbolu,boldsymbolxrangle) + epsilon$ by recovering the principal direction.
We also provide compress guarantees for NNs using the approximate low-rank structure produced by SGD.
arXiv Detail & Related papers (2022-09-29T15:29:10Z) - Neural Networks can Learn Representations with Gradient Descent [68.95262816363288]
In specific regimes, neural networks trained by gradient descent behave like kernel methods.
In practice, it is known that neural networks strongly outperform their associated kernels.
arXiv Detail & Related papers (2022-06-30T09:24:02Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Learning (Very) Simple Generative Models Is Hard [45.13248517769758]
We show that no-time algorithm can solve problem even when output coordinates of $mathbbRdtobbRd'$ are one-hidden-layer ReLU networks with $mathrmpoly(d)$ neurons.
Key ingredient in our proof is an ODE-based construction of a compactly supported, piecewise-linear function $f$ with neurally-bounded slopes such that the pushforward of $mathcalN(0,1)$ under $f$ matches all low-degree moments of $mathcal
arXiv Detail & Related papers (2022-05-31T17:59:09Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
We consider the dynamic of descent for learning a two-layer neural network.
We show that an over-parametrized two-layer neural network can provably learn with gradient loss at most ground with Tangent samples.
arXiv Detail & Related papers (2020-07-09T07:09:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.