論文の概要: Multi-Context Dual Hyper-Prior Neural Image Compression
- arxiv url: http://arxiv.org/abs/2309.10799v1
- Date: Tue, 19 Sep 2023 17:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 13:12:22.926257
- Title: Multi-Context Dual Hyper-Prior Neural Image Compression
- Title(参考訳): マルチコンテキストデュアルハイパープライアニューラル画像圧縮
- Authors: Atefeh Khoshkhahtinat, Ali Zafari, Piyush M. Mehta, Mohammad Akyash,
Hossein Kashiani, Nasser M. Nasrabadi
- Abstract要約: 入力画像から局所的情報と大域的情報の両方を効率的にキャプチャするトランスフォーマーに基づく非線形変換を提案する。
また、2つの異なるハイパープライヤを組み込んだ新しいエントロピーモデルを導入し、潜在表現のチャネル間および空間的依存関係をモデル化する。
実験の結果,提案するフレームワークは,速度歪み性能の観点から,最先端の手法よりも優れた性能を示すことがわかった。
- 参考スコア(独自算出の注目度): 10.349258638494137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transform and entropy models are the two core components in deep image
compression neural networks. Most existing learning-based image compression
methods utilize convolutional-based transform, which lacks the ability to model
long-range dependencies, primarily due to the limited receptive field of the
convolution operation. To address this limitation, we propose a
Transformer-based nonlinear transform. This transform has the remarkable
ability to efficiently capture both local and global information from the input
image, leading to a more decorrelated latent representation. In addition, we
introduce a novel entropy model that incorporates two different hyperpriors to
model cross-channel and spatial dependencies of the latent representation. To
further improve the entropy model, we add a global context that leverages
distant relationships to predict the current latent more accurately. This
global context employs a causal attention mechanism to extract long-range
information in a content-dependent manner. Our experiments show that our
proposed framework performs better than the state-of-the-art methods in terms
of rate-distortion performance.
- Abstract(参考訳): 変換とエントロピーモデルは、ディープイメージ圧縮ニューラルネットワークの2つのコアコンポーネントである。
既存の学習ベースの画像圧縮手法の多くは畳み込みに基づく変換を使用しており、畳み込み操作の受容領域が限られているため、長距離依存をモデル化する能力が欠けている。
この制限に対処するために, トランスに基づく非線形変換を提案する。
この変換は、入力画像から局所的情報と大域的情報の両方を効率的に捉え、より非相関な潜在表現をもたらす。
さらに、2つの異なるハイパープライヤを組み込んだ新しいエントロピーモデルを導入し、潜在表現のチャネル間および空間依存性をモデル化する。
エントロピーモデルをさらに改善するために,現在の潜在性をより正確に予測するために,遠方関係を利用したグローバルコンテキストを追加する。
このグローバルコンテキストは、コンテンツ依存の方法で長距離情報を抽出する因果的注意機構を用いる。
実験の結果,提案手法は従来の手法よりも高い性能を示すことがわかった。
関連論文リスト
- Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
学習された画像圧縮のフレームワークでは、コンテキストモデルは潜在表現間の依存関係をキャプチャする上で重要な役割を果たす。
本研究では,textbfCorner-to-Center 変換器を用いたコンテキストモデル (C$3$M) を提案する。
また,解析および合成変換における受容場を拡大するために,エンコーダ/デコーダのLong-range Crossing Attention Module (LCAM) を用いる。
論文 参考訳(メタデータ) (2023-11-29T21:40:28Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Joint Global and Local Hierarchical Priors for Learned Image Compression [30.44884350320053]
近年,従来の手書き画像コーデックと比較して,学習画像圧縮法の性能が向上している。
本稿では,ローカル情報とグローバル情報の両方をコンテンツに依存した方法で活用する,情報変換(Information Transformer, Informer)と呼ばれる新しいエントロピーモデルを提案する。
実験により,Informer はKodak および Tecnick データセットの最先端手法よりも速度歪み性能が向上することを示した。
論文 参考訳(メタデータ) (2021-12-08T06:17:37Z) - Video Frame Interpolation Transformer [86.20646863821908]
本稿では,トランスフォーマーをベースとした動画フレームワークを提案し,コンテンツ認識集約の重み付けと,自己注意操作による長距離依存を考慮した。
グローバルな自己注意の計算コストが高くなるのを避けるため、ビデオに局所的注意の概念を導入する。
さらに,トランスフォーマーの可能性を完全に実現するためのマルチスケール・フレーム・スキームを開発した。
論文 参考訳(メタデータ) (2021-11-27T05:35:10Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
本稿では,逐次的復号化プロセスを利用して潜在空間における因果文脈のエントロピー予測を行うために,分離エントロピー符号化の概念を提案する。
チャネル間の潜伏を分離し、チャネル間の関係を利用して高度に情報的コンテキストを生成する因果コンテキストモデルを提案する。
また、未知点の正確な予測のためのグローバル参照ポイントを見つけることができる因果的大域的予測モデルを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:15:10Z) - Learning Context-Based Non-local Entropy Modeling for Image Compression [140.64888994506313]
本稿では,文脈内でのグローバルな類似性を利用して,文脈モデリングのための非局所的操作を提案する。
エントロピーモデルはさらに、結合速度歪み最適化における速度損失として採用されている。
低歪みモデルのトレーニングに変換の幅が不可欠であることを考えると、最終的に変換のU-Netブロックを生成して、管理可能なメモリ消費と時間複雑性で幅を拡大する。
論文 参考訳(メタデータ) (2020-05-10T13:28:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。