論文の概要: PGDiff: Guiding Diffusion Models for Versatile Face Restoration via
Partial Guidance
- arxiv url: http://arxiv.org/abs/2309.10810v1
- Date: Tue, 19 Sep 2023 17:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 13:01:53.952331
- Title: PGDiff: Guiding Diffusion Models for Versatile Face Restoration via
Partial Guidance
- Title(参考訳): PGDiff:部分誘導による顔修復のための拡散モデル
- Authors: Peiqing Yang, Shangchen Zhou, Qingyi Tao, Chen Change Loy
- Abstract要約: これまでの研究は、明示的な劣化モデルを用いて解空間を制限することで、注目すべき成功を収めてきた。
実世界の劣化に適応可能な新しい視点である部分的ガイダンスを導入することでPGDiffを提案する。
提案手法は,既存の拡散優先手法に勝るだけでなく,タスク固有モデルと良好に競合する。
- 参考スコア(独自算出の注目度): 65.5618804029422
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Exploiting pre-trained diffusion models for restoration has recently become a
favored alternative to the traditional task-specific training approach.
Previous works have achieved noteworthy success by limiting the solution space
using explicit degradation models. However, these methods often fall short when
faced with complex degradations as they generally cannot be precisely modeled.
In this paper, we propose PGDiff by introducing partial guidance, a fresh
perspective that is more adaptable to real-world degradations compared to
existing works. Rather than specifically defining the degradation process, our
approach models the desired properties, such as image structure and color
statistics of high-quality images, and applies this guidance during the reverse
diffusion process. These properties are readily available and make no
assumptions about the degradation process. When combined with a diffusion
prior, this partial guidance can deliver appealing results across a range of
restoration tasks. Additionally, PGDiff can be extended to handle composite
tasks by consolidating multiple high-quality image properties, achieved by
integrating the guidance from respective tasks. Experimental results
demonstrate that our method not only outperforms existing diffusion-prior-based
approaches but also competes favorably with task-specific models.
- Abstract(参考訳): 修復のための事前訓練された拡散モデルの作成は、近年、従来のタスク固有のトレーニングアプローチの代替として好まれている。
これまでの研究は、明確な劣化モデルを用いて解空間を制限することで、注目すべき成功を収めてきた。
しかし、これらの手法は、一般的に正確にモデル化できない複雑な劣化に直面した場合には、しばしば不足する。
本稿では,既存の作品と比較して現実の劣化に適応可能な新しい視点である部分的ガイダンスを導入することでPGDiffを提案する。
劣化過程を具体的に定義するのではなく、画像構造や高品質画像の色統計などの望ましい特性をモデル化し、逆拡散過程においてこのガイダンスを適用する。
これらの性質は容易に利用でき、劣化過程について仮定することはない。
拡散前処理と組み合わせると、この部分的指導は様々な修復作業を通して魅力的な結果をもたらすことができる。
さらに、PGDiffは、複数の高品質な画像特性を統合し、各タスクからのガイダンスを統合することで、複合タスクを処理するように拡張することができる。
実験結果から,本手法は既存の拡散優先手法に勝るだけでなく,タスク固有モデルと良好に競合することが示された。
関連論文リスト
- Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
ブラインド顔復元法は、教師付き学習による大規模合成データセットの訓練において、顕著な性能を示した。
これらのデータセットは、手作りの画像分解パイプラインで、低品質の顔イメージをシミュレートすることによって生成されることが多い。
本稿では, 入力画像の集合のみを用いて, 劣化が不明で, 真理の目標がない場合にのみ, 復元モデルの微調整を行うことにより, この問題に対処する。
我々の最良のモデルは、合成と実世界の両方のデータセットの最先端の結果も達成します。
論文 参考訳(メタデータ) (2024-10-06T20:38:14Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - Prototype Clustered Diffusion Models for Versatile Inverse Problems [11.55838697574475]
測定に基づく確率は、逆の確率的図形方向を通した復元に基づく確率で再現可能であることを示す。
提案手法は, サンプル品質を考慮に入れた逆問題に対処し, 精度の高い劣化制御を実現する。
論文 参考訳(メタデータ) (2024-07-13T04:24:53Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - Decoupled Data Consistency with Diffusion Purification for Image Restoration [15.043002968696978]
本稿では,データ整合性ステップから逆処理を分離することで問題に対処する拡散型画像復元法を提案する。
我々の手法は多目的性を示し、潜在空間における効率的な問題解決に高い適応性を与える。
提案手法の有効性は,画像のデノイング,デブロアリング,インペイント,超解像など,画像修復作業における総合的な実験を通じて検証される。
論文 参考訳(メタデータ) (2024-03-10T00:47:05Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
低照度画像強調(LLIE)は条件付き拡散モデルを用いて有望な性能を実現している。
従来手法は、タスク固有の条件戦略の十分な定式化の重要性を無視するものであった。
本稿では,Retinex および semantic-based pre-processing condition を付加した新しいアプローチである JoReS-Diff を提案する。
論文 参考訳(メタデータ) (2023-12-20T08:05:57Z) - Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts [52.39959535724677]
画像復元モデルの一般化を改善するための代替手法を提案する。
ローカル,グローバル,チャネル表現ベースをキャプチャするマルチブランチ設計のMixture-of-Experts (MoE) であるAdaptIRを提案する。
我々のAdaptIRは、単一劣化タスクにおける安定した性能を実現し、8時間間、微調整はわずか0.6%のパラメータしか持たず、ハイブリッド劣化タスクにおいて優れる。
論文 参考訳(メタデータ) (2023-12-12T14:27:59Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - DifFace: Blind Face Restoration with Diffused Error Contraction [62.476329680424975]
DifFaceは、複雑な損失設計なしで、目に見えない複雑な劣化にもっと優しく対処できる。
現在の最先端の手法よりも優れており、特に深刻な劣化の場合には優れている。
論文 参考訳(メタデータ) (2022-12-13T11:52:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。