Rating Prediction in Conversational Task Assistants with Behavioral and
Conversational-Flow Features
- URL: http://arxiv.org/abs/2309.11307v1
- Date: Wed, 20 Sep 2023 13:34:03 GMT
- Title: Rating Prediction in Conversational Task Assistants with Behavioral and
Conversational-Flow Features
- Authors: Rafael Ferreira, David Semedo and Jo\~ao Magalh\~aes
- Abstract summary: We propose TB-Rater, a Transformer model which combines conversational-flow features with user behavior features for predicting user ratings.
In particular, we use real human-agent conversations and ratings collected in the Alexa TaskBot challenge.
Our results show the advantages of modeling both the conversational-flow and behavioral aspects of the conversation in a single model for offline rating prediction.
- Score: 6.188306785668896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the success of Conversational Task Assistants (CTA) can be
critical to understand user behavior and act accordingly. In this paper, we
propose TB-Rater, a Transformer model which combines conversational-flow
features with user behavior features for predicting user ratings in a CTA
scenario. In particular, we use real human-agent conversations and ratings
collected in the Alexa TaskBot challenge, a novel multimodal and multi-turn
conversational context. Our results show the advantages of modeling both the
conversational-flow and behavioral aspects of the conversation in a single
model for offline rating prediction. Additionally, an analysis of the
CTA-specific behavioral features brings insights into this setting and can be
used to bootstrap future systems.
Related papers
- Improving Open-Domain Dialogue Evaluation with a Causal Inference Model [8.625569782672663]
Explicit satisfaction ratings can be elicited from users, but users often do not provide ratings when asked.
Post-hoc ratings by experts are an alternative, but these can be both expensive and complex to collect.
Here, we explore the creation of automated methods for predicting both expert and user ratings of open-domain dialogues.
arXiv Detail & Related papers (2023-01-31T02:31:42Z) - Deploying a Retrieval based Response Model for Task Oriented Dialogues [8.671263996400844]
Task-oriented dialogue systems need to have high conversational capability, be easily adaptable to changing situations and conform to business constraints.
This paper describes a 3-step procedure to develop a conversational model that satisfies these criteria and can efficiently scale to rank a large set of response candidates.
arXiv Detail & Related papers (2022-10-25T23:10:19Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
We propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting.
Specifically, we learn the trade-off via a learned goal weight, which consists of four factors.
The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.
arXiv Detail & Related papers (2022-04-07T14:11:31Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Turn-level Dialog Evaluation with Dialog-level Weak Signals for
Bot-Human Hybrid Customer Service Systems [0.0]
We developed a machine learning approach that quantifies multiple aspects of the success or values in Customer Service contacts, at anytime during the interaction.
We show how it improves Amazon customer service quality in several applications.
arXiv Detail & Related papers (2020-10-25T19:36:23Z) - Adding Chit-Chat to Enhance Task-Oriented Dialogues [36.93917437554091]
Chit-Chat can be added to task-oriented dialogues to make virtual assistant conversations more engaging and interactive.
We present our new chit-chat-based annotations to 23.8K dialogues from two popular task-oriented dialogue datasets.
We also propose three new models for adding chit-chat to task-oriented dialogues, explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.
arXiv Detail & Related papers (2020-10-24T03:22:43Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
Text summarization is one of the most challenging and interesting problems in NLP.
This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations.
Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment.
arXiv Detail & Related papers (2020-10-04T20:12:44Z) - Exploiting Unsupervised Data for Emotion Recognition in Conversations [76.01690906995286]
Emotion Recognition in Conversations (ERC) aims to predict the emotional state of speakers in conversations.
The available supervised data for the ERC task is limited.
We propose a novel approach to leverage unsupervised conversation data.
arXiv Detail & Related papers (2020-10-02T13:28:47Z) - BERT-based Ensembles for Modeling Disclosure and Support in
Conversational Social Media Text [9.475039534437332]
We introduce a predictive ensemble model exploiting the finetuned contextualized word embeddings, RoBERTa and ALBERT.
We show that our model outperforms the base models in all considered metrics, achieving an improvement of $3%$ in the F1 score.
arXiv Detail & Related papers (2020-06-01T19:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.