Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models
- URL: http://arxiv.org/abs/2504.12313v1
- Date: Wed, 09 Apr 2025 13:21:17 GMT
- Title: Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models
- Authors: Xiaoyan Zhao, Yang Deng, Wenjie Wang, Hongzhan lin, Hong Cheng, Rui Zhang, See-Kiong Ng, Tat-Seng Chua,
- Abstract summary: This paper introduces a personality-aware user simulation for Conversational Recommender Systems (CRSs)<n>The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs.<n> Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits.
- Score: 70.180385882195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Recommender Systems (CRSs) engage users in multi-turn interactions to deliver personalized recommendations. The emergence of large language models (LLMs) further enhances these systems by enabling more natural and dynamic user interactions. However, a key challenge remains in understanding how personality traits shape conversational recommendation outcomes. Psychological evidence highlights the influence of personality traits on user interaction behaviors. To address this, we introduce an LLM-based personality-aware user simulation for CRSs (PerCRS). The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs. We incorporate multi-aspect evaluation to ensure robustness and conduct extensive analysis from both user and system perspectives. Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits, thereby prompting CRSs to dynamically adjust their recommendation strategies. Our experimental analysis offers empirical insights into the impact of personality traits on the outcomes of conversational recommender systems.
Related papers
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
Conversational recommendation systems (CRSs) use multi-turn interaction to capture user preferences and provide personalized recommendations.
We propose a generative reward model based simulated user, named GRSU, for automatic interaction with CRSs.
arXiv Detail & Related papers (2025-04-29T06:37:30Z) - Exploring Personality-Aware Interactions in Salesperson Dialogue Agents [21.282523537612477]
This study explores the influence of user personas, defined using the Myers-Briggs Type Indicator (MBTI), on the interaction quality and performance of sales-oriented dialogue agents.
Our findings reveal significant patterns in interaction dynamics, task completion rates, and dialogue naturalness, underscoring the future potential for dialogue agents to refine their strategies.
arXiv Detail & Related papers (2025-04-25T04:10:25Z) - Should We Tailor the Talk? Understanding the Impact of Conversational Styles on Preference Elicitation in Conversational Recommender Systems [19.830560938115436]
This study investigates the impact of different conversational styles on preference elicitation, task performance, and user satisfaction with Conversational recommender systems (CRSs)<n>Our results indicate that adapting conversational strategies based on user expertise and allowing flexibility between styles can enhance both user satisfaction and the effectiveness of recommendations in CRSs.
arXiv Detail & Related papers (2025-04-17T17:01:17Z) - SimUSER: Simulating User Behavior with Large Language Models for Recommender System Evaluation [1.2430809884830318]
We introduce Sim, an agent framework that serves as believable and cost-effective human proxies.<n>Sim identifies self-consistent personas from historical data, enriching user profiles with unique backgrounds and personalities.<n>We conduct experiments to explore the effects of thumbnails on click rates, the exposure effect, and the impact of reviews on user engagement.
arXiv Detail & Related papers (2025-04-17T07:57:23Z) - Reasoning LLMs for User-Aware Multimodal Conversational Agents [3.533721662684487]
Personalization in social robotics is critical for fostering effective human-robot interactions.<n>This paper proposes a novel framework called USER-LLM R1 for a user-aware conversational agent.<n>Our approach integrates chain-of-thought (CoT) reasoning models to iteratively infer user preferences and vision-language models.
arXiv Detail & Related papers (2025-04-02T13:00:17Z) - Stop Playing the Guessing Game! Target-free User Simulation for Evaluating Conversational Recommender Systems [15.481944998961847]
PEPPER is an evaluation protocol with target-free user simulators constructed from real-user interaction histories and reviews.
PEPPER enables realistic user-CRS dialogues without falling into simplistic guessing games.
PEPPER presents detailed measures for comprehensively evaluating the preference elicitation capabilities of CRSs.
arXiv Detail & Related papers (2024-11-25T07:36:20Z) - Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - A LLM-based Controllable, Scalable, Human-Involved User Simulator Framework for Conversational Recommender Systems [14.646529557978512]
Conversational Recommender System (CRS) leverages real-time feedback from users to dynamically model their preferences.
Large Language Models (LLMs) has marked the onset of a new epoch in computational capabilities.
We introduce a Controllable, scalable, and human-Involved (CSHI) simulator framework that manages the behavior of user simulators.
arXiv Detail & Related papers (2024-05-13T03:02:56Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs)
In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol.
We propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators.
arXiv Detail & Related papers (2023-05-22T15:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.