論文の概要: Multi-view Fuzzy Representation Learning with Rules based Model
- arxiv url: http://arxiv.org/abs/2309.11473v1
- Date: Wed, 20 Sep 2023 17:13:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 15:20:56.460990
- Title: Multi-view Fuzzy Representation Learning with Rules based Model
- Title(参考訳): ルールモデルを用いた多視点ファジィ表現学習
- Authors: Wei Zhang, Zhaohong Deng, Te Zhang, Kup-Sze Choi, Shitong Wang
- Abstract要約: 教師なしマルチビュー表現学習は、マルチビューデータをマイニングするために広く研究されている。
本稿では,MVRL_FSを用いた多視点ファジィ表現学習手法を提案する。
- 参考スコア(独自算出の注目度): 25.997490574254172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised multi-view representation learning has been extensively studied
for mining multi-view data. However, some critical challenges remain. On the
one hand, the existing methods cannot explore multi-view data comprehensively
since they usually learn a common representation between views, given that
multi-view data contains both the common information between views and the
specific information within each view. On the other hand, to mine the nonlinear
relationship between data, kernel or neural network methods are commonly used
for multi-view representation learning. However, these methods are lacking in
interpretability. To this end, this paper proposes a new multi-view fuzzy
representation learning method based on the interpretable Takagi-Sugeno-Kang
(TSK) fuzzy system (MVRL_FS). The method realizes multi-view representation
learning from two aspects. First, multi-view data are transformed into a
high-dimensional fuzzy feature space, while the common information between
views and specific information of each view are explored simultaneously.
Second, a new regularization method based on L_(2,1)-norm regression is
proposed to mine the consistency information between views, while the geometric
structure of the data is preserved through the Laplacian graph. Finally,
extensive experiments on many benchmark multi-view datasets are conducted to
validate the superiority of the proposed method.
- Abstract(参考訳): 教師なしマルチビュー表現学習は、マルチビューデータをマイニングするために広く研究されている。
しかし、いくつかの重要な課題が残っている。
一方、従来の手法では、ビュー間の共通情報とビュー内の特定の情報の両方を含むため、ビュー間の共通表現を学習することが多いため、包括的にマルチビューデータを探索することはできない。
一方で、データ間の非線形関係をマイニングするために、カーネルやニューラルネットワークの手法が多視点表現学習に一般的に用いられる。
しかし、これらの手法は解釈性に乏しい。
そこで本稿では,高木sugeno-kang(tsk)ファジィシステム(mvrl_fs)を用いた多視点ファジィ表現学習手法を提案する。
この方法は2つの側面から多視点表現学習を実現する。
まず、マルチビューデータを高次元ファジィ特徴空間に変換し、ビュー間の共通情報と各ビューの特定情報とを同時に探索する。
次に,l_(2,1)-ノルム回帰に基づく新しい正規化法を提案し,ビュー間の一貫性情報をマイニングし,データの幾何学的構造をラプラシアングラフで保存する。
最後に,提案手法の優位性を検証するため,多数のベンチマークマルチビューデータセットについて広範な実験を行った。
関連論文リスト
- Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
この研究は、データリカバリとアライメントを階層的に一貫した方法で融合し、異なるビュー間の相互情報を最大化するディープMVCフレームワークを提案する。
私たちの知る限りでは、これは欠落したデータ問題と不整合データ問題に異なる学習パラダイムで別々に対処する最初の試みになるかもしれません。
論文 参考訳(メタデータ) (2023-10-28T06:43:57Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - Dual Representation Learning for One-Step Clustering of Multi-View Data [30.131568561100817]
異なるビューの共通情報と特定情報の二重表現を利用して,新しい一段階のマルチビュークラスタリング手法を提案する。
このフレームワークでは、表現学習とクラスタリングのパーティションが相互に恩恵を受け、クラスタリングのパフォーマンスが効果的に向上する。
論文 参考訳(メタデータ) (2022-08-30T14:20:26Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
非完全多視点学習のための新しい遅延不均質グラフネットワーク(LHGN)を提案する。
統一された潜在表現を学習することにより、異なる視点間の一貫性と相補性の間のトレードオフが暗黙的に実現される。
学習とテストフェーズの不整合を回避するため,分類タスクのグラフ学習に基づくトランスダクティブ学習手法を適用した。
論文 参考訳(メタデータ) (2022-08-29T15:14:21Z) - TSK Fuzzy System Towards Few Labeled Incomplete Multi-View Data
Classification [24.01191516774655]
これらの課題に対処するために,トランスダクティブ半教師付きマルチビューTSKファジィシステムモデリング法(SSIMV_TSK)を提案する。
提案手法は,未知のビュー計算,ラベルなしデータの擬似ラベル学習,ファジィシステムモデリングをひとつのプロセスに統合し,解釈可能なファジィルールを持つモデルを生成する。
実データを用いた実験の結果,提案手法は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-10-08T11:41:06Z) - V3H: View Variation and View Heredity for Incomplete Multi-view
Clustering [65.29597317608844]
不完全なマルチビュークラスタリングは、これらの不完全なビューを統合する効果的な方法である。
本稿では,この制限を克服するために,新しいビューバージョニング・ビュー・ジェレダリティ・アプローチ(V3H)を提案する。
V3Hは、不完全なマルチビューデータから一貫した情報とユニークな情報を同時に学習するためのクラスタリングアルゴリズムに遺伝学を導入する最初の研究である可能性がある。
論文 参考訳(メタデータ) (2020-11-23T03:24:48Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Embedded Deep Bilinear Interactive Information and Selective Fusion for
Multi-view Learning [70.67092105994598]
本稿では,上記の2つの側面に着目した,新しい多視点学習フレームワークを提案する。
特に、さまざまな深層ニューラルネットワークをトレーニングして、様々なビュー内表現を学習する。
6つの公開データセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-07-13T01:13:23Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。