論文の概要: Error mitigation via error detection using Generalized Superfast
Encodings
- arxiv url: http://arxiv.org/abs/2309.11673v1
- Date: Wed, 20 Sep 2023 22:47:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-22 17:33:58.072384
- Title: Error mitigation via error detection using Generalized Superfast
Encodings
- Title(参考訳): 一般化超高速符号化を用いた誤り検出による誤り除去
- Authors: Tobias Hagge and Nathan Wiebe
- Abstract要約: 我々はブラヴィイ・キタエフ超高速符号化を用いてフェルミオン符号化における量子エラー検出符号を実装した。
最近傍の反発項を持つスピンレスハバードモデルでは、1ビット誤りは検出可能であり、より複雑なエラーは高い確率で検出可能であることを示す。
- 参考スコア(独自算出の注目度): 0.6768558752130311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide a new approach to error mitigation for quantum chemistry
simulation that uses a Bravyi-Kitaev Superfast encoding to implement a quantum
error detecting code within the fermionic encoding. Our construction has
low-weight parity checks as well. We show that for the spinless Hubbard model
with nearest-neighbor repulsion terms, one-qubit errors are detectable, and
more complicated errors are detectable with high probability. While our
error-detection requires additional quantum circuitry, we argue that there is a
regime in which the beneficial effect of error-mitigation outweighs the
deleterious effects of additional errors due to additional circuitry. We show
that our scheme can be implemented under realistic qubit connectivity
requirements.
- Abstract(参考訳): 量子化学シミュレーションにおける誤り低減のための新しいアプローチとして,Bravyi-Kitaevスーパーファストエンコーディングを用いて,フェルミオンエンコーディング内に量子エラー検出コードを実装する。
私たちの建設にも低重量のパリティチェックがあります。
最寄りの反発項を持つスピンレスハバードモデルでは、1量子ビットの誤差を検出でき、より複雑な誤差を高い確率で検出できることを示す。
我々の誤り検出には追加の量子回路が必要であるが、誤り除去の利点が追加の回路による追加の誤りの有害な影響よりも優れていると我々は主張する。
提案手法は,現実的なqubit接続条件下で実装可能であることを示す。
関連論文リスト
- Bounding the systematic error in quantum error mitigation due to model violation [0.0]
本研究では,エラーモデルの不正確さがエラー軽減に与える影響について,上界を効率的に計算する手法を開発した。
我々のプロトコルは追加の実験を必要とせず、代わりにエラーモデルとエラー学習データの比較に頼っている。
推定上界は、通常、ランダム回路上での誤差軽減の最悪の観測性能に近いことが示される。
論文 参考訳(メタデータ) (2024-08-20T16:27:00Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Matching and maximum likelihood decoding of a multi-round subsystem
quantum error correction experiment [1.2189422792863451]
重六角格子で接続された超伝導量子ビット上で量子誤差補正を行う。
フルプロセッサは、距離3の論理量子ビットを符号化し、耐故障症候群の測定を数ラウンド行うことができる。
完全整合デコーダの使用によって論理誤差が変化することを示す。
論文 参考訳(メタデータ) (2022-03-14T15:44:11Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Effect of quantum error correction on detection-induced coherent errors [0.0]
本研究では,検出誘起コヒーレントエラー下での量子誤り訂正符号(QECC)の性能について検討する。
検出によって引き起こされるコヒーレントなエラーは、未検出のエラー項となり、それは蓄積され、論理的エラーへと進化する。
論文 参考訳(メタデータ) (2021-07-19T15:42:04Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。