Efficient Long-Short Temporal Attention Network for Unsupervised Video
Object Segmentation
- URL: http://arxiv.org/abs/2309.11707v1
- Date: Thu, 21 Sep 2023 01:09:46 GMT
- Title: Efficient Long-Short Temporal Attention Network for Unsupervised Video
Object Segmentation
- Authors: Ping Li and Yu Zhang and Li Yuan and Huaxin Xiao and Binbin Lin and
Xianghua Xu
- Abstract summary: Unsupervised Video Object (VOS) aims at identifying the contours of primary foreground objects in videos without any prior knowledge.
Previous methods do not fully use spatial-temporal context and fail to tackle this challenging task in real-time.
This motivates us to develop an efficient Long-Short Temporal Attention network (termed LSTA) for unsupervised VOS task from a holistic view.
- Score: 23.645412918420906
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised Video Object Segmentation (VOS) aims at identifying the contours
of primary foreground objects in videos without any prior knowledge. However,
previous methods do not fully use spatial-temporal context and fail to tackle
this challenging task in real-time. This motivates us to develop an efficient
Long-Short Temporal Attention network (termed LSTA) for unsupervised VOS task
from a holistic view. Specifically, LSTA consists of two dominant modules,
i.e., Long Temporal Memory and Short Temporal Attention. The former captures
the long-term global pixel relations of the past frames and the current frame,
which models constantly present objects by encoding appearance pattern.
Meanwhile, the latter reveals the short-term local pixel relations of one
nearby frame and the current frame, which models moving objects by encoding
motion pattern. To speedup the inference, the efficient projection and the
locality-based sliding window are adopted to achieve nearly linear time
complexity for the two light modules, respectively. Extensive empirical studies
on several benchmarks have demonstrated promising performances of the proposed
method with high efficiency.
Related papers
- PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
We propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection.
We use point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement.
We conduct extensive experiments on the large-scale dataset to demonstrate that our approach performs well against state-of-the-art methods.
arXiv Detail & Related papers (2023-12-13T18:59:13Z) - Motion-inductive Self-supervised Object Discovery in Videos [99.35664705038728]
We propose a model for processing consecutive RGB frames, and infer the optical flow between any pair of frames using a layered representation.
We demonstrate superior performance over previous state-of-the-art methods on three public video segmentation datasets.
arXiv Detail & Related papers (2022-10-01T08:38:28Z) - Motion-aware Memory Network for Fast Video Salient Object Detection [15.967509480432266]
We design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD.
In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames.
In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches.
The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
arXiv Detail & Related papers (2022-08-01T15:56:19Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Exploring Motion and Appearance Information for Temporal Sentence
Grounding [52.01687915910648]
We propose a Motion-Appearance Reasoning Network (MARN) to solve temporal sentence grounding.
We develop separate motion and appearance branches to learn motion-guided and appearance-guided object relations.
Our proposed MARN significantly outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-01-03T02:44:18Z) - Coarse-Fine Networks for Temporal Activity Detection in Videos [45.03545172714305]
We introduce 'Co-Fine Networks', a two-stream architecture which benefits from different abstractions of temporal resolution to learn better video representations for long-term motion.
We show that our method can outperform the state-of-the-arts for action detection in public datasets with a significantly reduced compute and memory footprint.
arXiv Detail & Related papers (2021-03-01T20:48:01Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
We introduce "tracking-by-detection" into Video Object (VOS)
We propose a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance.
We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
arXiv Detail & Related papers (2020-07-11T05:44:16Z) - Dual Temporal Memory Network for Efficient Video Object Segmentation [42.05305410986511]
One of the fundamental challenges in Video Object (VOS) is how to make the most use of the temporal information to boost the performance.
We present an end-to-end network which stores short- and long-term video sequence information preceding the current frame as the temporal memories.
Our network consists of two temporal sub-networks including a short-term memory sub-network and a long-term memory sub-network.
arXiv Detail & Related papers (2020-03-13T06:07:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.