High-order Joint Constituency and Dependency Parsing
- URL: http://arxiv.org/abs/2309.11888v2
- Date: Tue, 26 Mar 2024 08:04:36 GMT
- Title: High-order Joint Constituency and Dependency Parsing
- Authors: Yanggan Gu, Yang Hou, Zhefeng Wang, Xinyu Duan, Zhenghua Li,
- Abstract summary: We revisit the topic of jointly parsing constituency and dependency trees, i.e., to produce compatible constituency and dependency trees simultaneously for input sentences.
We conduct experiments and analysis on seven languages, covering both rich-resource and low-resource scenarios.
- Score: 15.697429723696011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work revisits the topic of jointly parsing constituency and dependency trees, i.e., to produce compatible constituency and dependency trees simultaneously for input sentences, which is attractive considering that the two types of trees are complementary in representing syntax. The original work of Zhou and Zhao (2019) performs joint parsing only at the inference phase. They train two separate parsers under the multi-task learning framework (i.e., one shared encoder and two independent decoders). They design an ad-hoc dynamic programming-based decoding algorithm of $O(n^5)$ time complexity for finding optimal compatible tree pairs. Compared to their work, we make progress in three aspects: (1) adopting a much more efficient decoding algorithm of $O(n^4)$ time complexity, (2) exploring joint modeling at the training phase, instead of only at the inference phase, (3) proposing high-order scoring components to promote constituent-dependency interaction. We conduct experiments and analysis on seven languages, covering both rich-resource and low-resource scenarios. Results and analysis show that joint modeling leads to a modest overall performance boost over separate modeling, but substantially improves the complete matching ratio of whole trees, thanks to the explicit modeling of tree compatibility.
Related papers
- Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions
for Tree Ensembles [6.664930499708017]
The Shapley value (SV) is a concept in explainable artificial intelligence (XAI) research for quantifying additive feature attributions of predictions.
We present TreeSHAP-IQ, an efficient method to compute any-order additive Shapley interactions for predictions tree-based models.
arXiv Detail & Related papers (2024-01-22T16:08:41Z) - Structured Dialogue Discourse Parsing [79.37200787463917]
discourse parsing aims to uncover the internal structure of a multi-participant conversation.
We propose a principled method that improves upon previous work from two perspectives: encoding and decoding.
Experiments show that our method achieves new state-of-the-art, surpassing the previous model by 2.3 on STAC and 1.5 on Molweni.
arXiv Detail & Related papers (2023-06-26T22:51:01Z) - TreeDQN: Learning to minimize Branch-and-Bound tree [78.52895577861327]
Branch-and-Bound is a convenient approach to solving optimization tasks in the form of Mixed Linear Programs.
The efficiency of the solver depends on the branchning used to select a variable for splitting.
We propose a reinforcement learning method that can efficiently learn the branching.
arXiv Detail & Related papers (2023-06-09T14:01:26Z) - Hexatagging: Projective Dependency Parsing as Tagging [63.5392760743851]
We introduce a novel dependency, the hexatagger, that constructs dependency trees by tagging the words in a sentence with elements from a finite set of possible tags.
Our approach is fully parallelizable at training time, i.e., the structure-building actions needed to build a dependency parse can be predicted in parallel to each other.
We achieve state-of-the-art performance of 96.4 LAS and 97.4 UAS on the Penn Treebank test set.
arXiv Detail & Related papers (2023-06-08T18:02:07Z) - Parallel Tree Kernel Computation [0.0]
We devise a parallel implementation of the sequential algorithm for the computation of some tree kernels of two finite sets of trees.
Results show that the proposed parallel algorithm outperforms the sequential one in terms of latency.
arXiv Detail & Related papers (2023-05-12T18:16:45Z) - Structure-Unified M-Tree Coding Solver for MathWord Problem [57.825176412485504]
In previous work, models designed by taking into account the properties of the binary tree structure of mathematical expressions at the output side have achieved better performance.
In this paper, we propose the Structure-Unified M-Tree Coding Coding (S-UMCr), which applies a tree with any M branches (M-tree) to unify the output structures.
Experimental results on the widely used MAWPS and Math23K datasets have demonstrated that SUMC-r not only outperforms several state-of-the-art models but also performs much better under low-resource conditions.
arXiv Detail & Related papers (2022-10-22T12:20:36Z) - R2D2: Recursive Transformer based on Differentiable Tree for
Interpretable Hierarchical Language Modeling [36.61173494449218]
This paper proposes a model based on differentiable CKY style binary trees to emulate the composition process.
We extend the bidirectional language model pre-training objective to this architecture, attempting to predict each word given its left and right abstraction nodes.
To scale up our approach, we also introduce an efficient pruned tree induction algorithm to enable encoding in just a linear number of composition steps.
arXiv Detail & Related papers (2021-07-02T11:00:46Z) - Multitask Pointer Network for Multi-Representational Parsing [0.34376560669160383]
We propose a transition-based approach that, by training a single model, can efficiently parse any input sentence with both constituent and dependency trees.
We develop a Pointer Network architecture with two separate task-specific decoders and a common encoder, and follow a learning strategy to jointly train them.
arXiv Detail & Related papers (2020-09-21T10:04:07Z) - Span-based Semantic Parsing for Compositional Generalization [53.24255235340056]
SpanBasedSP predicts a span tree over an input utterance, explicitly encoding how partial programs compose over spans in the input.
On GeoQuery, SCAN and CLOSURE, SpanBasedSP performs similarly to strong seq2seq baselines on random splits, but dramatically improves performance compared to baselines on splits that require compositional generalization.
arXiv Detail & Related papers (2020-09-13T16:42:18Z) - Exploiting Syntactic Structure for Better Language Modeling: A Syntactic
Distance Approach [78.77265671634454]
We make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called "syntactic distances"
Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
arXiv Detail & Related papers (2020-05-12T15:35:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.