CORG: Generating Answers from Complex, Interrelated Contexts
- URL: http://arxiv.org/abs/2505.00023v1
- Date: Fri, 25 Apr 2025 02:40:48 GMT
- Title: CORG: Generating Answers from Complex, Interrelated Contexts
- Authors: Hyunji Lee, Franck Dernoncourt, Trung Bui, Seunghyun Yoon,
- Abstract summary: In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors.<n>Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation.<n>We introduce Context Organizer (CORG), a framework that organizes multiple contexts into independently processed groups.
- Score: 57.213304718157985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors, leading to complex interrelationships between contexts. Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation. We classify these relationships into four types: distracting, ambiguous, counterfactual, and duplicated. Our analysis reveals that no single approach effectively addresses all these interrelationships simultaneously. Therefore, we introduce Context Organizer (CORG), a framework that organizes multiple contexts into independently processed groups. This design allows the model to efficiently find all relevant answers while ensuring disambiguation. CORG consists of three key components: a graph constructor, a reranker, and an aggregator. Our results demonstrate that CORG balances performance and efficiency effectively, outperforming existing grouping methods and achieving comparable results to more computationally intensive, single-context approaches.
Related papers
- OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNet is an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning.
OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning.
arXiv Detail & Related papers (2024-10-10T02:45:23Z) - Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering [12.60063463163226]
IIER captures the internal connections between document chunks by considering three types of interactions: structural, keyword, and semantic.
It identifies multiple seed nodes based on the target question and iteratively searches for relevant chunks to gather supporting evidence.
It refines the context and reasoning chain, aiding the large language model in reasoning and answer generation.
arXiv Detail & Related papers (2024-08-06T02:39:55Z) - Complex Reasoning over Logical Queries on Commonsense Knowledge Graphs [61.796960984541464]
We present COM2 (COMplex COMmonsense), a new dataset created by sampling logical queries.
We verbalize them using handcrafted rules and large language models into multiple-choice and text generation questions.
Experiments show that language models trained on COM2 exhibit significant improvements in complex reasoning ability.
arXiv Detail & Related papers (2024-03-12T08:13:52Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Global Structure Knowledge-Guided Relation Extraction Method for
Visually-Rich Document [37.05334263712291]
We propose a GlObal Structure knowledge-guided relation Extraction (GOSE) framework.
GOSE initiates by generating preliminary relation predictions on entity pairs extracted from a scanned image of the document.
Global structure knowledge is captured from the preceding iterative predictions, which are then incorporated into the representations of the entities.
arXiv Detail & Related papers (2023-05-23T09:18:47Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
Joint entity and relation extraction is an essential task in natural language processing and knowledge graph construction.
We propose a novel joint entity and relation extraction model, named OneRel, which casts joint extraction as a fine-grained triple classification problem.
arXiv Detail & Related papers (2022-03-10T15:09:59Z) - Document-level Relation Extraction with Context Guided Mention
Integration and Inter-pair Reasoning [18.374097786748834]
Document-level Relation Extraction (DRE) aims to recognize the relations between two entities.
Few previous studies have investigated the mention integration, which may be problematic.
We propose two novel techniques, Context Guided Mention Integration and Inter-pair Reasoning.
arXiv Detail & Related papers (2022-01-13T08:00:23Z) - PRGC: Potential Relation and Global Correspondence Based Joint
Relational Triple Extraction [23.998135821388203]
We propose a joint relational triple extraction framework based on Potential Relation and Global Correspondence (PRGC)
PRGC achieves state-of-the-art performance on public benchmarks with higher efficiency and delivers consistent performance gain on complex scenarios of overlapping triples.
arXiv Detail & Related papers (2021-06-18T03:38:07Z) - Joint Constrained Learning for Event-Event Relation Extraction [94.3499255880101]
We propose a joint constrained learning framework for modeling event-event relations.
Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations.
We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data.
arXiv Detail & Related papers (2020-10-13T22:45:28Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z) - Clustering-based Unsupervised Generative Relation Extraction [3.342376225738321]
We propose a Clustering-based Unsupervised generative Relation Extraction framework (CURE)
We use an "Encoder-Decoder" architecture to perform self-supervised learning so the encoder can extract relation information.
Our model performs better than state-of-the-art models on both New York Times (NYT) and United Nations Parallel Corpus (UNPC) standard datasets.
arXiv Detail & Related papers (2020-09-26T20:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.