Neural Stochastic Screened Poisson Reconstruction
- URL: http://arxiv.org/abs/2309.11993v1
- Date: Thu, 21 Sep 2023 12:04:15 GMT
- Title: Neural Stochastic Screened Poisson Reconstruction
- Authors: Silvia Sell\'an and Alec Jacobson
- Abstract summary: We use a neural network to study and quantify this reconstruction uncertainty under a Poisson smoothness prior.
Our algorithm addresses the main limitations of existing work and can be fully integrated into the 3D scanning pipeline.
- Score: 34.83373148204125
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reconstructing a surface from a point cloud is an underdetermined problem. We
use a neural network to study and quantify this reconstruction uncertainty
under a Poisson smoothness prior. Our algorithm addresses the main limitations
of existing work and can be fully integrated into the 3D scanning pipeline,
from obtaining an initial reconstruction to deciding on the next best sensor
position and updating the reconstruction upon capturing more data.
Related papers
- Deep Loss Convexification for Learning Iterative Models [11.36644967267829]
Iterative methods such as iterative closest point (ICP) for point cloud registration often suffer from bad local optimality.
We propose learning to form a convex landscape around each ground truth.
arXiv Detail & Related papers (2024-11-16T01:13:04Z) - USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
Spike cameras, as an innovative neuromorphic camera that captures scenes with the 0-1 bit stream at 40 kHz, are increasingly employed for the 3D reconstruction task.
Previous spike-based 3D reconstruction approaches often employ a casecased pipeline.
We propose a synergistic optimization framework, textbfUSP-Gaussian, that unifies spike-based image reconstruction, pose correction, and Gaussian splatting into an end-to-end framework.
arXiv Detail & Related papers (2024-11-15T14:15:16Z) - GradientSurf: Gradient-Domain Neural Surface Reconstruction from RGB
Video [0.0]
GradientSurf is a novel algorithm for real time surface reconstruction from monocular RGB video.
Inspired by Poisson Surface Reconstruction, the proposed method builds on the tight coupling between surface, volume, and oriented point cloud.
For the task of indoor scene reconstruction, experimental results show that the proposed method reconstructs surfaces with more details in curved regions.
arXiv Detail & Related papers (2023-10-09T04:54:30Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems.
This paper addresses two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one.
Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.
arXiv Detail & Related papers (2022-07-22T10:05:36Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
We propose SSN-Fitting to reconstruct a better signed distance field.
SSN-Fitting consists of a semi-signed supervision and a loss-based region sampling strategy.
We conduct experiments to demonstrate that SSN-Fitting achieves state-of-the-art performance under different settings.
arXiv Detail & Related papers (2022-06-14T09:40:17Z) - Deep Point Cloud Reconstruction [74.694733918351]
Point cloud obtained from 3D scanning is often sparse, noisy, and irregular.
To cope with these issues, recent studies have been separately conducted to densify, denoise, and complete inaccurate point cloud.
We propose a deep point cloud reconstruction network consisting of two stages: 1) a 3D sparse stacked-hourglass network as for the initial densification and denoising, 2) a refinement via transformers converting the discrete voxels into 3D points.
arXiv Detail & Related papers (2021-11-23T07:53:28Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - Learning Occupancy Function from Point Clouds for Surface Reconstruction [6.85316573653194]
Implicit function based surface reconstruction has been studied for a long time to recover 3D shapes from point clouds sampled from surfaces.
This paper proposes a novel method for learning occupancy functions from sparse point clouds and achieves better performance on challenging surface reconstruction tasks.
arXiv Detail & Related papers (2020-10-22T02:07:29Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.