Uncertainty-driven Exploration Strategies for Online Grasp Learning
- URL: http://arxiv.org/abs/2309.12038v2
- Date: Wed, 24 Apr 2024 11:40:37 GMT
- Title: Uncertainty-driven Exploration Strategies for Online Grasp Learning
- Authors: Yitian Shi, Philipp Schillinger, Miroslav Gabriel, Alexander Qualmann, Zohar Feldman, Hanna Ziesche, Ngo Anh Vien,
- Abstract summary: We present an uncertainty-based approach for online learning of grasp predictions for robotic bin picking.
Specifically, the online learning algorithm with an effective exploration strategy can significantly improve its adaptation performance to unseen environment settings.
- Score: 43.88491290121489
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Existing grasp prediction approaches are mostly based on offline learning, while, ignoring the exploratory grasp learning during online adaptation to new picking scenarios, i.e., objects that are unseen or out-of-domain (OOD), camera and bin settings, etc. In this paper, we present an uncertainty-based approach for online learning of grasp predictions for robotic bin picking. Specifically, the online learning algorithm with an effective exploration strategy can significantly improve its adaptation performance to unseen environment settings. To this end, we first propose to formulate online grasp learning as an RL problem that will allow us to adapt both grasp reward prediction and grasp poses. We propose various uncertainty estimation schemes based on Bayesian uncertainty quantification and distributional ensembles. We carry out evaluations on real-world bin picking scenes of varying difficulty. The objects in the bin have various challenging physical and perceptual characteristics that can be characterized by semi- or total transparency, and irregular or curved surfaces. The results of our experiments demonstrate a notable improvement of grasp performance in comparison to conventional online learning methods which incorporate only naive exploration strategies. Video: https://youtu.be/fPKOrjC2QrU
Related papers
- Pseudo-Labeling and Contextual Curriculum Learning for Online Grasp
Learning in Robotic Bin Picking [47.4409816260196]
SSL-ConvSAC combines semi-supervised learning and reinforcement learning for online grasp learning.
We demonstrate promise for improving online grasp learning on bin picking tasks using a physical 7-DoF Franka Emika robot arm with a suction gripper.
arXiv Detail & Related papers (2024-03-04T21:41:27Z) - Discounted Adaptive Online Learning: Towards Better Regularization [5.5899168074961265]
We study online learning in adversarial nonstationary environments.
We propose an adaptive (i.e., instance optimal) algorithm that improves the widespread non-adaptive baseline.
We also consider the (Gibbs and Candes, 2021)-style online conformal prediction problem.
arXiv Detail & Related papers (2024-02-05T04:29:39Z) - EANet: Expert Attention Network for Online Trajectory Prediction [5.600280639034753]
Expert Attention Network is a complete online learning framework for trajectory prediction.
We introduce expert attention, which adjusts the weights of different depths of network layers, avoiding the model updated slowly due to gradient problem.
Furthermore, we propose a short-term motion trend kernel function which is sensitive to scenario change, allowing the model to respond quickly.
arXiv Detail & Related papers (2023-09-11T07:09:40Z) - Smoothed Online Learning for Prediction in Piecewise Affine Systems [43.64498536409903]
This paper builds on the recently developed smoothed online learning framework.
It provides the first algorithms for prediction and simulation in piecewise affine systems.
arXiv Detail & Related papers (2023-01-26T15:54:14Z) - Continual Predictive Learning from Videos [100.27176974654559]
We study a new continual learning problem in the context of video prediction.
We propose the continual predictive learning (CPL) approach, which learns a mixture world model via predictive experience replay.
We construct two new benchmarks based on RoboNet and KTH, in which different tasks correspond to different physical robotic environments or human actions.
arXiv Detail & Related papers (2022-04-12T08:32:26Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.