EANet: Expert Attention Network for Online Trajectory Prediction
- URL: http://arxiv.org/abs/2309.05683v1
- Date: Mon, 11 Sep 2023 07:09:40 GMT
- Title: EANet: Expert Attention Network for Online Trajectory Prediction
- Authors: Pengfei Yao, Tianlu Mao, Min Shi, Jingkai Sun, Zhaoqi Wang
- Abstract summary: Expert Attention Network is a complete online learning framework for trajectory prediction.
We introduce expert attention, which adjusts the weights of different depths of network layers, avoiding the model updated slowly due to gradient problem.
Furthermore, we propose a short-term motion trend kernel function which is sensitive to scenario change, allowing the model to respond quickly.
- Score: 5.600280639034753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction plays a crucial role in autonomous driving. Existing
mainstream research and continuoual learning-based methods all require training
on complete datasets, leading to poor prediction accuracy when sudden changes
in scenarios occur and failing to promptly respond and update the model.
Whether these methods can make a prediction in real-time and use data instances
to update the model immediately(i.e., online learning settings) remains a
question. The problem of gradient explosion or vanishing caused by data
instance streams also needs to be addressed. Inspired by Hedge Propagation
algorithm, we propose Expert Attention Network, a complete online learning
framework for trajectory prediction. We introduce expert attention, which
adjusts the weights of different depths of network layers, avoiding the model
updated slowly due to gradient problem and enabling fast learning of new
scenario's knowledge to restore prediction accuracy. Furthermore, we propose a
short-term motion trend kernel function which is sensitive to scenario change,
allowing the model to respond quickly. To the best of our knowledge, this work
is the first attempt to address the online learning problem in trajectory
prediction. The experimental results indicate that traditional methods suffer
from gradient problems and that our method can quickly reduce prediction errors
and reach the state-of-the-art prediction accuracy.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
Adapting to concept drift is a challenging task in machine learning.
In communication networks, such issue emerges when performing traffic forecasting following afailure event.
We propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining.
arXiv Detail & Related papers (2024-04-08T08:47:46Z) - TaskMet: Task-Driven Metric Learning for Model Learning [29.0053868393653]
Deep learning models are often deployed in downstream tasks that the training procedure may not be aware of.
We propose take the task loss signal one level deeper than the parameters of the model and use it to learn the parameters of the loss function the model is trained on.
This approach does not alter the optimal prediction model itself, but rather changes the model learning to emphasize the information important for the downstream task.
arXiv Detail & Related papers (2023-12-08T18:59:03Z) - STDA-Meta: A Meta-Learning Framework for Few-Shot Traffic Prediction [5.502177196766933]
We propose a novel-temporal domain adaptation (STDA) method that learns transferable meta-knowledge from data-sufficient cities in an adversarial manner.
This learned meta-knowledge can improve prediction performance of data-scarce cities.
Specifically, we train the STDA model using a Model-Atemporal Meta-Learning (MAML) based episode learning process.
arXiv Detail & Related papers (2023-10-31T06:52:56Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - PreTR: Spatio-Temporal Non-Autoregressive Trajectory Prediction
Transformer [0.9786690381850356]
We introduce a model called PRediction Transformer (PReTR) that extracts features from the multi-agent scenes by employing a factorized-temporal attention module.
It shows less computational needs than previously studied models with empirically better results.
We leverage encoder-decoder Transformer networks for parallel decoding a set of learned object queries.
arXiv Detail & Related papers (2022-03-17T12:52:23Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z) - New Perspectives on the Use of Online Learning for Congestion Level
Prediction over Traffic Data [6.664111208927475]
This work focuses on classification over time series data.
When a time series is generated by non-stationary phenomena, the pattern relating the series with the class to be predicted may evolve over time.
Online learning methods incrementally learn from new data samples arriving over time, and accommodate eventual changes along the data stream.
arXiv Detail & Related papers (2020-03-27T09:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.