Autoregressive Sign Language Production: A Gloss-Free Approach with Discrete Representations
- URL: http://arxiv.org/abs/2309.12179v2
- Date: Sat, 8 Jun 2024 12:33:11 GMT
- Title: Autoregressive Sign Language Production: A Gloss-Free Approach with Discrete Representations
- Authors: Eui Jun Hwang, Huije Lee, Jong C. Park,
- Abstract summary: Gloss-free Sign Language Production (SLP) offers a direct translation of spoken language sentences into sign language.
This paper presents a novel approach to SLP that leverages Vector Quantization to derive discrete representations from sign pose sequences.
- Score: 8.254354613959224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gloss-free Sign Language Production (SLP) offers a direct translation of spoken language sentences into sign language, bypassing the need for gloss intermediaries. This paper presents the Sign language Vector Quantization Network, a novel approach to SLP that leverages Vector Quantization to derive discrete representations from sign pose sequences. Our method, rooted in both manual and non-manual elements of signing, supports advanced decoding methods and integrates latent-level alignment for enhanced linguistic coherence. Through comprehensive evaluations, we demonstrate superior performance of our method over prior SLP methods and highlight the reliability of Back-Translation and Fr\'echet Gesture Distance as evaluation metrics.
Related papers
- MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production [93.32354378820648]
We propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users.
A sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step.
Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
arXiv Detail & Related papers (2024-07-04T13:53:50Z) - A Tale of Two Languages: Large-Vocabulary Continuous Sign Language Recognition from Spoken Language Supervision [74.972172804514]
We introduce a multi-task Transformer model, CSLR2, that is able to ingest a signing sequence and output in a joint embedding space between signed language and spoken language text.
New dataset annotations provide continuous sign-level annotations for six hours of test videos, and will be made publicly available.
Our model significantly outperforms the previous state of the art on both tasks.
arXiv Detail & Related papers (2024-05-16T17:19:06Z) - A Data-Driven Representation for Sign Language Production [26.520016084139964]
Sign Language Production aims to automatically translate spoken language sentences into continuous sequences of sign language.
Current state-of-the-art approaches rely on scarce linguistic resources to work.
This paper introduces an innovative solution by transforming the continuous pose generation problem into a discrete sequence generation problem.
arXiv Detail & Related papers (2024-04-17T15:52:38Z) - Sign Language Translation with Iterative Prototype [104.76761930888604]
IP-SLT is a simple yet effective framework for sign language translation (SLT)
Our idea mimics the behavior of human reading, where a sentence can be digested repeatedly, till reaching accurate understanding.
arXiv Detail & Related papers (2023-08-23T15:27:50Z) - Gloss-free Sign Language Translation: Improving from Visual-Language
Pretraining [56.26550923909137]
Gloss-Free Sign Language Translation (SLT) is a challenging task due to its cross-domain nature.
We propose a novel Gloss-Free SLT based on Visual-Language Pretraining (GFSLT-)
Our approach involves two stages: (i) integrating Contrastive Language-Image Pre-training with masked self-supervised learning to create pre-tasks that bridge the semantic gap between visual and textual representations and restore masked sentences, and (ii) constructing an end-to-end architecture with an encoder-decoder-like structure that inherits the parameters of the pre-trained Visual and Text Decoder from
arXiv Detail & Related papers (2023-07-27T10:59:18Z) - Signing at Scale: Learning to Co-Articulate Signs for Large-Scale
Photo-Realistic Sign Language Production [43.45785951443149]
Sign languages are visual languages, with vocabularies as rich as their spoken language counterparts.
Current deep-learning based Sign Language Production (SLP) models produce under-articulated skeleton pose sequences.
We tackle large-scale SLP by learning to co-articulate between dictionary signs.
We also propose SignGAN, a pose-conditioned human synthesis model that produces photo-realistic sign language videos.
arXiv Detail & Related papers (2022-03-29T08:51:38Z) - Improving Sign Language Translation with Monolingual Data by Sign
Back-Translation [105.83166521438463]
We propose a sign back-translation (SignBT) approach, which incorporates massive spoken language texts into sign training.
With a text-to-gloss translation model, we first back-translate the monolingual text to its gloss sequence.
Then, the paired sign sequence is generated by splicing pieces from an estimated gloss-to-sign bank at the feature level.
arXiv Detail & Related papers (2021-05-26T08:49:30Z) - Continuous 3D Multi-Channel Sign Language Production via Progressive
Transformers and Mixture Density Networks [37.679114155300084]
Sign Language Production (SLP) must embody both the continuous articulation and full morphology of sign to be truly understandable by the Deaf community.
We propose a novel Progressive Transformer architecture, the first SLP model to translate from spoken language sentences to continuous 3D sign pose sequences.
We present extensive data augmentation techniques to reduce prediction drift, alongside an adversarial training regime and a Mixture Density Network (MDN) formulation to produce realistic and expressive sign pose sequences.
arXiv Detail & Related papers (2021-03-11T22:11:17Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z) - Adversarial Training for Multi-Channel Sign Language Production [43.45785951443149]
We propose an Adversarial Multi-Channel approach to Sign Language Production.
We frame sign production as a minimax game between a transformer-based Generator and a conditional Discriminator.
Our adversarial discriminator evaluates the realism of sign production conditioned on the source text, pushing the generator towards a realistic and articulate output.
arXiv Detail & Related papers (2020-08-27T23:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.