MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production
- URL: http://arxiv.org/abs/2407.12842v1
- Date: Thu, 4 Jul 2024 13:53:50 GMT
- Title: MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production
- Authors: Jian Ma, Wenguan Wang, Yi Yang, Feng Zheng,
- Abstract summary: We propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users.
A sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step.
Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
- Score: 93.32354378820648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sign language understanding has made significant strides; however, there is still no viable solution for generating sign sequences directly from entire spoken content, e.g., text or speech. In this paper, we propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users. In particular, a sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step. Moreover, by creating a joint embedding space for text, audio, and sign, we bind these modalities and leverage the semantic consistency among them to provide informative feedback for the model training. This embedding-consistency learning strategy minimizes the reliance on sign triplets and ensures continuous model refinement, even with a missing audio modality. Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
Related papers
- Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - A Tale of Two Languages: Large-Vocabulary Continuous Sign Language Recognition from Spoken Language Supervision [74.972172804514]
We introduce a multi-task Transformer model, CSLR2, that is able to ingest a signing sequence and output in a joint embedding space between signed language and spoken language text.
New dataset annotations provide continuous sign-level annotations for six hours of test videos, and will be made publicly available.
Our model significantly outperforms the previous state of the art on both tasks.
arXiv Detail & Related papers (2024-05-16T17:19:06Z) - Sign Stitching: A Novel Approach to Sign Language Production [35.35777909051466]
We propose using dictionary examples to create expressive sign language sequences.
We present a 7-step approach to effectively stitch the signs together.
We leverage the SignGAN model to map the output to a photo-realistic signer.
arXiv Detail & Related papers (2024-05-13T11:44:57Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
We study the feasibility of utilizing multilingual sign language corpora to facilitate continuous sign language recognition.
We first build two sign language dictionaries containing isolated signs that appear in two datasets.
Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model.
arXiv Detail & Related papers (2023-08-21T15:58:47Z) - Cross-modality Data Augmentation for End-to-End Sign Language Translation [66.46877279084083]
End-to-end sign language translation (SLT) aims to convert sign language videos into spoken language texts directly without intermediate representations.
It has been a challenging task due to the modality gap between sign videos and texts and the data scarcity of labeled data.
We propose a novel Cross-modality Data Augmentation (XmDA) framework to transfer the powerful gloss-to-text translation capabilities to end-to-end sign language translation.
arXiv Detail & Related papers (2023-05-18T16:34:18Z) - SignBERT+: Hand-model-aware Self-supervised Pre-training for Sign
Language Understanding [132.78015553111234]
Hand gesture serves as a crucial role during the expression of sign language.
Current deep learning based methods for sign language understanding (SLU) are prone to over-fitting due to insufficient sign data resource.
We propose the first self-supervised pre-trainable SignBERT+ framework with model-aware hand prior incorporated.
arXiv Detail & Related papers (2023-05-08T17:16:38Z) - Signing at Scale: Learning to Co-Articulate Signs for Large-Scale
Photo-Realistic Sign Language Production [43.45785951443149]
Sign languages are visual languages, with vocabularies as rich as their spoken language counterparts.
Current deep-learning based Sign Language Production (SLP) models produce under-articulated skeleton pose sequences.
We tackle large-scale SLP by learning to co-articulate between dictionary signs.
We also propose SignGAN, a pose-conditioned human synthesis model that produces photo-realistic sign language videos.
arXiv Detail & Related papers (2022-03-29T08:51:38Z) - Continuous 3D Multi-Channel Sign Language Production via Progressive
Transformers and Mixture Density Networks [37.679114155300084]
Sign Language Production (SLP) must embody both the continuous articulation and full morphology of sign to be truly understandable by the Deaf community.
We propose a novel Progressive Transformer architecture, the first SLP model to translate from spoken language sentences to continuous 3D sign pose sequences.
We present extensive data augmentation techniques to reduce prediction drift, alongside an adversarial training regime and a Mixture Density Network (MDN) formulation to produce realistic and expressive sign pose sequences.
arXiv Detail & Related papers (2021-03-11T22:11:17Z) - Watch, read and lookup: learning to spot signs from multiple supervisors [99.50956498009094]
Given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video.
We train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles which provide additional weak-supervision; and (3) looking up words in visual sign language dictionaries.
These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning.
arXiv Detail & Related papers (2020-10-08T14:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.