Text-Guided Vector Graphics Customization
- URL: http://arxiv.org/abs/2309.12302v1
- Date: Thu, 21 Sep 2023 17:59:01 GMT
- Title: Text-Guided Vector Graphics Customization
- Authors: Peiying Zhang, Nanxuan Zhao, Jing Liao
- Abstract summary: We propose a novel pipeline that generates high-quality customized vector graphics based on textual prompts.
Our method harnesses the capabilities of large pre-trained text-to-image models.
We evaluate our method using multiple metrics from vector-level, image-level and text-level perspectives.
- Score: 31.41266632288932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vector graphics are widely used in digital art and valued by designers for
their scalability and layer-wise topological properties. However, the creation
and editing of vector graphics necessitate creativity and design expertise,
leading to a time-consuming process. In this paper, we propose a novel pipeline
that generates high-quality customized vector graphics based on textual prompts
while preserving the properties and layer-wise information of a given exemplar
SVG. Our method harnesses the capabilities of large pre-trained text-to-image
models. By fine-tuning the cross-attention layers of the model, we generate
customized raster images guided by textual prompts. To initialize the SVG, we
introduce a semantic-based path alignment method that preserves and transforms
crucial paths from the exemplar SVG. Additionally, we optimize path parameters
using both image-level and vector-level losses, ensuring smooth shape
deformation while aligning with the customized raster image. We extensively
evaluate our method using multiple metrics from vector-level, image-level, and
text-level perspectives. The evaluation results demonstrate the effectiveness
of our pipeline in generating diverse customizations of vector graphics with
exceptional quality. The project page is
https://intchous.github.io/SVGCustomization.
Related papers
- Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision [20.325246638505714]
We introduce GRIMOIRE, a text-guided generative model that learns to map images onto a discrete codebook by reconstructing them as vector shapes.
Unlike existing models that require direct supervision from data, GRIMOIRE learns using only image supervision which opens up vector generative modeling to significantly more data.
arXiv Detail & Related papers (2024-10-08T12:41:31Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVG is a superpixel-based vectorization model that achieves fast and high-precision image vectorization.
We propose a two-stage self-training framework, where a coarse-stage model is employed to reconstruct the main structure and a refinement-stage model is used for enriching the details.
Experiments demonstrate the superior performance of our method in terms of reconstruction accuracy and inference time compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-06-14T07:43:23Z) - Text-to-Vector Generation with Neural Path Representation [27.949704002538944]
We propose a novel neural path representation that learns the path latent space from both sequence and image modalities.
In the first stage, a pre-trained text-to-image diffusion model guides the initial generation of complex vector graphics.
In the second stage, we refine the graphics using a layer-wise image vectorization strategy to achieve clearer elements and structure.
arXiv Detail & Related papers (2024-05-16T17:59:22Z) - StrokeNUWA: Tokenizing Strokes for Vector Graphic Synthesis [112.25071764647683]
StrokeNUWA is a pioneering work exploring a better visual representation ''stroke tokens'' on vector graphics.
equipped with stroke tokens, StrokeNUWA can significantly surpass traditional LLM-based and optimization-based methods.
StrokeNUWA achieves up to a 94x speedup in inference over the speed of prior methods with an exceptional SVG code compression ratio of 6.9%.
arXiv Detail & Related papers (2024-01-30T15:20:26Z) - SAMVG: A Multi-stage Image Vectorization Model with the Segment-Anything
Model [59.40189857428461]
We propose a multi-stage model to vectorize images into SVG (Scalable Vector Graphics)
Firstly, SAMVG uses general image segmentation provided by the Segment-Anything Model and uses a novel filtering method to identify the best dense segmentation map for the entire image.
Secondly, SAMVG then identifies missing components and adds more detailed components to the SVG.
arXiv Detail & Related papers (2023-11-09T11:11:56Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
We show that a text-conditioned diffusion model trained on pixel representations of images can be used to generate SVG-exportable vector graphics.
Inspired by recent text-to-3D work, we learn an SVG consistent with a caption using Score Distillation Sampling.
Experiments show greater quality than prior work, and demonstrate a range of styles including pixel art and sketches.
arXiv Detail & Related papers (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
We propose Layerwise Image Vectorization, namely LIVE, to convert images to SVGs and simultaneously maintain its image topology.
Live generates compact forms with layer-wise structures that are semantically consistent with human perspective.
Live initiates human editable SVGs for both designers and can be used in other applications.
arXiv Detail & Related papers (2022-06-09T17:55:02Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
We propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and manipulation.
Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself.
We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool.
arXiv Detail & Related papers (2020-07-22T09:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.