Text-to-Vector Generation with Neural Path Representation
- URL: http://arxiv.org/abs/2405.10317v2
- Date: Mon, 20 May 2024 16:56:35 GMT
- Title: Text-to-Vector Generation with Neural Path Representation
- Authors: Peiying Zhang, Nanxuan Zhao, Jing Liao,
- Abstract summary: We propose a novel neural path representation that learns the path latent space from both sequence and image modalities.
In the first stage, a pre-trained text-to-image diffusion model guides the initial generation of complex vector graphics.
In the second stage, we refine the graphics using a layer-wise image vectorization strategy to achieve clearer elements and structure.
- Score: 27.949704002538944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vector graphics are widely used in digital art and highly favored by designers due to their scalability and layer-wise properties. However, the process of creating and editing vector graphics requires creativity and design expertise, making it a time-consuming task. Recent advancements in text-to-vector (T2V) generation have aimed to make this process more accessible. However, existing T2V methods directly optimize control points of vector graphics paths, often resulting in intersecting or jagged paths due to the lack of geometry constraints. To overcome these limitations, we propose a novel neural path representation by designing a dual-branch Variational Autoencoder (VAE) that learns the path latent space from both sequence and image modalities. By optimizing the combination of neural paths, we can incorporate geometric constraints while preserving expressivity in generated SVGs. Furthermore, we introduce a two-stage path optimization method to improve the visual and topological quality of generated SVGs. In the first stage, a pre-trained text-to-image diffusion model guides the initial generation of complex vector graphics through the Variational Score Distillation (VSD) process. In the second stage, we refine the graphics using a layer-wise image vectorization strategy to achieve clearer elements and structure. We demonstrate the effectiveness of our method through extensive experiments and showcase various applications. The project page is https://intchous.github.io/T2V-NPR.
Related papers
- Segmentation-guided Layer-wise Image Vectorization with Gradient Fills [6.037332707968933]
We propose a segmentation-guided vectorization framework to convert images into concise vector graphics with gradient fills.
With the guidance of an embedded gradient-aware segmentation, our approach progressively appends gradient-filled B'ezier paths to the output.
arXiv Detail & Related papers (2024-08-28T12:08:25Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVG is a superpixel-based vectorization model that achieves fast and high-precision image vectorization.
We propose a two-stage self-training framework, where a coarse-stage model is employed to reconstruct the main structure and a refinement-stage model is used for enriching the details.
Experiments demonstrate the superior performance of our method in terms of reconstruction accuracy and inference time compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-06-14T07:43:23Z) - StrokeNUWA: Tokenizing Strokes for Vector Graphic Synthesis [112.25071764647683]
StrokeNUWA is a pioneering work exploring a better visual representation ''stroke tokens'' on vector graphics.
equipped with stroke tokens, StrokeNUWA can significantly surpass traditional LLM-based and optimization-based methods.
StrokeNUWA achieves up to a 94x speedup in inference over the speed of prior methods with an exceptional SVG code compression ratio of 6.9%.
arXiv Detail & Related papers (2024-01-30T15:20:26Z) - SVGDreamer: Text Guided SVG Generation with Diffusion Model [31.76771064173087]
We propose a novel text-guided vector graphics synthesis method called SVGDreamer.
SIVE process enables decomposition of synthesis into foreground objects and background.
VPSD approach addresses issues of shape over-smoothing, color over-saturation, limited diversity, and slow convergence.
arXiv Detail & Related papers (2023-12-27T08:50:01Z) - Text-Guided Vector Graphics Customization [31.41266632288932]
We propose a novel pipeline that generates high-quality customized vector graphics based on textual prompts.
Our method harnesses the capabilities of large pre-trained text-to-image models.
We evaluate our method using multiple metrics from vector-level, image-level and text-level perspectives.
arXiv Detail & Related papers (2023-09-21T17:59:01Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
We show that a text-conditioned diffusion model trained on pixel representations of images can be used to generate SVG-exportable vector graphics.
Inspired by recent text-to-3D work, we learn an SVG consistent with a caption using Score Distillation Sampling.
Experiments show greater quality than prior work, and demonstrate a range of styles including pixel art and sketches.
arXiv Detail & Related papers (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
We propose Layerwise Image Vectorization, namely LIVE, to convert images to SVGs and simultaneously maintain its image topology.
Live generates compact forms with layer-wise structures that are semantically consistent with human perspective.
Live initiates human editable SVGs for both designers and can be used in other applications.
arXiv Detail & Related papers (2022-06-09T17:55:02Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
We propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and manipulation.
Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself.
We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool.
arXiv Detail & Related papers (2020-07-22T09:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.