Evaluating the diversity and utility of materials proposed by generative
models
- URL: http://arxiv.org/abs/2309.12323v1
- Date: Wed, 9 Aug 2023 14:42:08 GMT
- Title: Evaluating the diversity and utility of materials proposed by generative
models
- Authors: Alexander New, Michael Pekala, Elizabeth A. Pogue, Nam Q. Le, Janna
Domenico, Christine D. Piatko, Christopher D. Stiles
- Abstract summary: We show how one state-of-the-art generative model, the physics-guided crystal generation model, can be used as part of the inverse design process.
Our findings suggest how generative models might be improved to enable better inverse design.
- Score: 38.85523285991743
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative machine learning models can use data generated by scientific
modeling to create large quantities of novel material structures. Here, we
assess how one state-of-the-art generative model, the physics-guided crystal
generation model (PGCGM), can be used as part of the inverse design process. We
show that the default PGCGM's input space is not smooth with respect to
parameter variation, making material optimization difficult and limited. We
also demonstrate that most generated structures are predicted to be
thermodynamically unstable by a separate property-prediction model, partially
due to out-of-domain data challenges. Our findings suggest how generative
models might be improved to enable better inverse design.
Related papers
- Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers [1.2289361708127877]
New inorganic materials with promising properties pose a critical challenge, both scientifically and for industrial applications.
Discovery of new inorganic materials with promising properties poses a critical challenge, both scientifically and for industrial applications.
In this study, we explore a new type of diffusion model for the generative inverse design of crystal structures, with a backbone based on a Transformer architecture.
arXiv Detail & Related papers (2024-06-13T16:03:15Z) - Enhancing Generative Molecular Design via Uncertainty-guided Fine-tuning of Variational Autoencoders [2.0701439270461184]
A critical challenge for pre-trained generative molecular design models is to fine-tune them to be better suited for downstream design tasks.
In this work, we propose a novel approach for a generative uncertainty decoder (VAE)-based GMD model through performance feedback in an active setting.
arXiv Detail & Related papers (2024-05-31T02:00:25Z) - A Generative Model for Accelerated Inverse Modelling Using a Novel Embedding for Continuous Variables [0.0]
In materials science, the challenge of rapid prototyping materials with desired properties often involves extensive experimentation to find suitable microstructures.
Using generative machine learning models can be a viable solution which also reduces the computational cost.
This comes with new challenges because, e.g., a continuous property variable as conditioning input to the model is required.
We investigate the shortcomings of an existing method and compare this to a novel embedding strategy for generative models that is based on the binary representation of floating point numbers.
This eliminates the need for normalization, preserves information, and creates a versatile embedding space for conditioning the generative model.
arXiv Detail & Related papers (2023-11-19T15:03:19Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - On generative models as the basis for digital twins [0.0]
A framework is proposed for generative models as a basis for digital twins or mirrors of structures.
The proposal is based on the premise that deterministic models cannot account for the uncertainty present in most structural modelling applications.
arXiv Detail & Related papers (2022-03-08T20:34:56Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.