Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers
- URL: http://arxiv.org/abs/2406.09263v2
- Date: Fri, 14 Jun 2024 03:25:22 GMT
- Title: Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers
- Authors: Izumi Takahara, Kiyou Shibata, Teruyasu Mizoguchi,
- Abstract summary: New inorganic materials with promising properties pose a critical challenge, both scientifically and for industrial applications.
Discovery of new inorganic materials with promising properties poses a critical challenge, both scientifically and for industrial applications.
In this study, we explore a new type of diffusion model for the generative inverse design of crystal structures, with a backbone based on a Transformer architecture.
- Score: 1.2289361708127877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning have enabled the generation of realistic data by training generative models on large datasets of text, images, and audio. While these models have demonstrated exceptional performance in generating novel and plausible data, it remains an open question whether they can effectively accelerate scientific discovery through the data generation and drive significant advancements across various scientific fields. In particular, the discovery of new inorganic materials with promising properties poses a critical challenge, both scientifically and for industrial applications. However, unlike textual or image data, materials, or more specifically crystal structures, consist of multiple types of variables - including lattice vectors, atom positions, and atomic species. This complexity in data give rise to a variety of approaches for representing and generating such data. Consequently, the design choices of generative models for crystal structures remain an open question. In this study, we explore a new type of diffusion model for the generative inverse design of crystal structures, with a backbone based on a Transformer architecture. We demonstrate our models are superior to previous methods in their versatility for generating crystal structures with desired properties. Furthermore, our empirical results suggest that the optimal conditioning methods vary depending on the dataset.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Generative Hierarchical Materials Search [91.93125016916463]
We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
arXiv Detail & Related papers (2024-09-10T17:51:28Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
This work aims at the generation of new crystal structures with desired properties, such as chemical stability and specified chemical composition.
The novelty of the presented approach resides in the fact that the lattice of the crystal cell is not fixed.
A multigraph crystal representation is introduced that respects symmetry constraints, yielding computational advantages.
arXiv Detail & Related papers (2023-10-16T02:53:24Z) - Evaluating the diversity and utility of materials proposed by generative
models [38.85523285991743]
We show how one state-of-the-art generative model, the physics-guided crystal generation model, can be used as part of the inverse design process.
Our findings suggest how generative models might be improved to enable better inverse design.
arXiv Detail & Related papers (2023-08-09T14:42:08Z) - Physics guided deep learning generative models for crystal materials
discovery [7.7755483163557155]
Deep learning based generative models such as deepfake have been able to generate amazing images and videos.
Here we show that by exploiting and adding physically oriented data augmentation, our deep adversarial network (GAN) based generative models can now generate crystal structures with higher physical feasibility.
arXiv Detail & Related papers (2021-12-07T06:54:48Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area.
We conduct an extensive suite of diagnostic tests to observe whether modeling choices leave detectable artifacts in the text they generate.
Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by observing the generated text alone.
arXiv Detail & Related papers (2020-04-13T21:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.