論文の概要: Deep Knowledge Tracing is an implicit dynamic multidimensional item
response theory model
- arxiv url: http://arxiv.org/abs/2309.12334v2
- Date: Tue, 5 Dec 2023 08:52:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 19:33:47.603096
- Title: Deep Knowledge Tracing is an implicit dynamic multidimensional item
response theory model
- Title(参考訳): Deep Knowledge Tracingは暗黙の動的多次元アイテム応答理論モデルである
- Authors: Jill-J\^enn Vie (SODA), Hisashi Kashima
- Abstract要約: ディープ・ナレッジ・トレーシング(Deep Knowledge Trace, DKT)は、リカレントニューラルネットワークに依存するナレッジ・トレースの競合モデルである。
本稿では,エンコーダデコーダアーキテクチャとして深い知識追跡を行う。
より単純なデコーダは、DKTが使用するデコーダよりもパラメータが少なく、学生のパフォーマンスをより良く予測できることを示す。
- 参考スコア(独自算出の注目度): 25.894399244406287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge tracing consists in predicting the performance of some students on
new questions given their performance on previous questions, and can be a prior
step to optimizing assessment and learning. Deep knowledge tracing (DKT) is a
competitive model for knowledge tracing relying on recurrent neural networks,
even if some simpler models may match its performance. However, little is known
about why DKT works so well. In this paper, we frame deep knowledge tracing as
a encoderdecoder architecture. This viewpoint not only allows us to propose
better models in terms of performance, simplicity or expressivity but also
opens up promising avenues for future research directions. In particular, we
show on several small and large datasets that a simpler decoder, with possibly
fewer parameters than the one used by DKT, can predict student performance
better.
- Abstract(参考訳): 知識追跡は、過去の質問に対する評価から得られる新しい質問に対する一部の学生のパフォーマンスを予測することであり、評価と学習を最適化するための事前ステップとなる。
ディープ・ナレッジ・トレーシング(Deep Knowledge Trace, DKT)は、リカレントニューラルネットワークに依存する知識トレースの競合モデルである。
しかし、なぜDKTがうまく機能するのかは分かっていない。
本稿では,深層知識トレースをエンコーダデコーダアーキテクチャとして構成する。
この視点により、パフォーマンス、単純さ、表現性の観点からより良いモデルを提案するだけでなく、将来の研究の方向性に有望な道を開くことができます。
特に、DKTが使用するものよりもパラメータが少ない単純なデコーダが、学生のパフォーマンスをより良く予測できる、小規模で大規模なデータセットをいくつか紹介する。
関連論文リスト
- The Trifecta: Three simple techniques for training deeper
Forward-Forward networks [0.0]
本稿では,より深いネットワーク上でのフォワード・フォワードアルゴリズムを大幅に改善する3つの手法のコレクションを提案する。
我々の実験は、我々のモデルが、単純なデータセットのトレーニング速度とテスト精度の両方において、同様に構造化されたバックプロパゲーションベースのモデルと同等であることを示した。
論文 参考訳(メタデータ) (2023-11-29T22:44:32Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
そこで本研究では,メモリから取得したクロスモーダルな情報を推論時に表現することで,その埋め込みを洗練できる視覚テキストモデルを提案する。
注目すべきことに、これは凍ったCLIPの上に軽量の単層核融合トランスを用いて行うことができる。
検索強化コントラスト訓練(RECO)がCLIPの性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-06-12T15:52:02Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Deep Unfolded Tensor Robust PCA with Self-supervised Learning [21.710932587432396]
深部展開を用いたテンソルRPCAの高速かつ簡易な自己教師モデルについて述べる。
我々のモデルは、競争力やパフォーマンスを保ちながら、根拠となる真理ラベルの必要性を排除します。
我々はこれらの主張を、合成データと実世界のタスクの混合上で実証する。
論文 参考訳(メタデータ) (2022-12-21T20:34:42Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - Great Truths are Always Simple: A Rather Simple Knowledge Encoder for
Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models [89.98762327725112]
自然言語における常識推論は、人工知能システムの望ましい能力である。
複雑なコモンセンス推論タスクを解決するための典型的な解決策は、知識対応グラフニューラルネットワーク(GNN)エンコーダで事前訓練された言語モデル(PTM)を強化することである。
有効性にもかかわらず、これらのアプローチは重いアーキテクチャ上に構築されており、外部知識リソースがPTMの推論能力をどのように改善するかを明確に説明できない。
論文 参考訳(メタデータ) (2022-05-04T01:27:36Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - On the Interpretability of Deep Learning Based Models for Knowledge
Tracing [5.120837730908589]
知識追跡により、Intelligent Tutoring Systemsは、学生が習得したトピックやスキルを推測することができる。
Deep Knowledge Tracing(DKT)やDynamic Key-Value Memory Network(DKVMN)といったディープラーニングベースのモデルは、大幅に改善されている。
しかし、これらのディープラーニングベースのモデルは、ディープニューラルネットワークによって学習される意思決定プロセスが完全には理解されていないため、他のモデルほど解釈できない。
論文 参考訳(メタデータ) (2021-01-27T11:55:03Z) - Tidying Deep Saliency Prediction Architectures [6.613005108411055]
本稿では,入力特徴,マルチレベル統合,読み出しアーキテクチャ,損失関数の4つの主成分を同定する。
我々はSimpleNet と MDNSal という2つの新しいエンドツーエンドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-10T19:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。