Efficient recursive encoders for quantum Reed-Muller codes towards Fault tolerance
- URL: http://arxiv.org/abs/2405.14549v1
- Date: Thu, 23 May 2024 13:28:52 GMT
- Title: Efficient recursive encoders for quantum Reed-Muller codes towards Fault tolerance
- Authors: Praveen Jayakumar, Priya J. Nadkarni, Shayan Srinivasa Garani,
- Abstract summary: Efficient encoding circuits for quantum codes that admit gates are crucial to reduce noise and realize useful quantum computers.
We construct resource efficient encoders for the class of quantum codes constructed from Reed-Muller and punctured Reed-Muller codes.
These encoders on $n$ qubits have circuit depth of $O(log n)$ and lower gate counts compared to previous works.
- Score: 2.2940141855172036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transversal gates are logical gate operations on encoded quantum information that are efficient in gate count and depth, and are designed to minimize error propagation. Efficient encoding circuits for quantum codes that admit transversal gates are thus crucial to reduce noise and realize useful quantum computers. The class of punctured Quantum Reed-Muller codes admit transversal gates. We construct resource efficient recursive encoders for the class of quantum codes constructed from Reed-Muller and punctured Reed-Muller codes. These encoders on $n$ qubits have circuit depth of $O(\log n)$ and lower gate counts compared to previous works. The number of CNOT gates in the encoder across bi-partitions of the qubits is found to be equal to the entanglement entropy across these partitions, demonstrating that the encoder is optimal in terms of CNOT gates across these partitions. Finally, connecting these ideas, we explicitly show that entanglement can be extracted from QRM codewords.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Systematic Design and Optimization of Quantum Circuits for Stabilizer
Codes [11.637855523244838]
Keeping qubits error free is one of the most important steps towards reliable quantum computing.
Different stabilizer codes for quantum error correction have been proposed in past decades.
We propose a formal algorithm for systematic construction of encoding circuits for general stabilizer codes.
arXiv Detail & Related papers (2023-09-21T03:21:47Z) - Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color
code [0.0]
We observe improved performance for encoded circuits implementing non-Clifford gates.
Our results illustrate the potential of using codes with quantum gates to implement non-trivial algorithms.
arXiv Detail & Related papers (2023-09-15T18:00:02Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Hierarchical memories: Simulating quantum LDPC codes with local gates [0.05156484100374058]
Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing efficient fault-tolerant quantum memories.
We construct a new family of hierarchical codes, that encode a number of logical qubits K = Omega(N/log(N)2.
Under conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all logical qubits are encoded in the surface code.
arXiv Detail & Related papers (2023-03-08T18:48:12Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Applications of Universal Parity Quantum Computation [0.0]
We demonstrate the applicability of a universal gate set in the parity encoding, which is a dual to the standard gate model.
Embedding these algorithms in the parity encoding reduces the circuit depth compared to conventional gate-based implementations.
We propose simple implementations of multiqubit gates in tailored encodings and an efficient strategy to prepare graph states.
arXiv Detail & Related papers (2022-05-19T12:31:46Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.