Dicke model semiclassical dynamics in superradiant dipolar phase in the
'bound luminosity' state
- URL: http://arxiv.org/abs/2309.12446v1
- Date: Thu, 21 Sep 2023 19:39:57 GMT
- Title: Dicke model semiclassical dynamics in superradiant dipolar phase in the
'bound luminosity' state
- Authors: S. I. Mukhin, A. Mukherjee, S. S. Seidov
- Abstract summary: Analytic solution of semiclassical dynamics equations of the Dicke model in a superradiant state is presented.
The periodic beatings of the photonic and atomic coherent state amplitudes are shifted in time revealing an effect of 'bound luminosity'
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analytic solution of semiclassical dynamics equations of the Dicke model in a
superradiant state is presented. The time dependences of the amplitudes of
superradiant bosonic condensate and coherent two-level atomic array in the
microwave cavity prove to be expressed via Jacobi elliptic functions of real
time and manifest existence of an adiabatic invariant of motion in the strongly
coupled system. The periodic beatings of the photonic and atomic coherent state
amplitudes are shifted in time revealing an effect of 'bound luminosity', when
energy stored in the two-level system during 'darkness' in the cavity is
suddenly converted into photonic condensate that 'illuminates' the cavity for
half a period, before it plunges into 'darkness' again.
Related papers
- Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Quasicondensation and off-diagonal long-range order of hard-core bosons
during a free expansion [0.0]
Quasicondensation in one dimension is known to occur for equilibrium systems of hard-core bosons (HCBs) at zero temperature.
We revisit the dynamical quasicondensation of HCBs, providing a fully analytical treatment of the issue.
arXiv Detail & Related papers (2024-01-30T10:03:17Z) - Self-organized cavity bosons beyond the adiabatic elimination
approximation [0.0]
We take into account the dynamics of the cavity mode, quantum fluctuations, and self-organization of individual runs.
We observe metastability at very long times and superfluid quasi-long range order, in sharp contrast with the true long range order found in the ground state of the approximate Bose-Hubbard model.
arXiv Detail & Related papers (2023-12-16T17:16:13Z) - "Bound luminosity" state in the extended Dicke model [0.0]
We obtain quasiclassical equations of motion of the extended Dicke model.
The periodic beatings of the electromagnetic field occur in the microwave cavity filled with the ensemble of two--level systems.
arXiv Detail & Related papers (2022-09-22T18:57:57Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Floquet Engineering of Non-Equilibrium Superradiance [0.0]
We show the emergence of a non-equilibrium superradiant phase in the dissipative Rabi-Dicke model.
This phase is characterized by a photonic steady state that oscillates with a frequency close to the cavity frequency.
We propose to use this Floquet-assisted superradiant phase to obtain controllable optical gain for a laser-like operation.
arXiv Detail & Related papers (2022-03-14T18:42:32Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.