Spatio-temporal correlations of noise in MOS spin qubits
- URL: http://arxiv.org/abs/2309.12542v2
- Date: Mon, 25 Sep 2023 01:02:04 GMT
- Title: Spatio-temporal correlations of noise in MOS spin qubits
- Authors: Amanda E. Seedhouse, Nard Dumoulin Stuyck, Santiago Serrano, Tuomo
Tanttu, Will Gilbert, Jonathan Yue Huang, Fay E. Hudson, Kohei M. Itoh, Arne
Laucht, Wee Han Lim, Chih Hwan Yang, Andrew S. Dzurak, Andre Saraiva
- Abstract summary: We show how to decompose signals into both frequency and time components to gain a deeper insight into the sources of noise in our systems.
We apply the analysis to a long feedback experiment performed on a state-of-the-art two-qubit system in a pair of SiMOS quantum dots.
- Score: 0.2981781876202281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum computing, characterising the full noise profile of qubits can aid
the efforts towards increasing coherence times and fidelities by creating error
mitigating techniques specific to the type of noise in the system, or by
completely removing the sources of noise. Spin qubits in MOS quantum dots are
exposed to noise originated from the complex glassy behaviour of two-level
fluctuators, leading to non-trivial correlations between qubit properties both
in space and time. With recent engineering progress, large amounts of data are
being collected in typical spin qubit device experiments, and it is beneficiary
to explore data analysis options inspired from fields of research that are
experienced in managing large data sets, examples include astrophysics, finance
and climate science. Here, we propose and demonstrate wavelet-based analysis
techniques to decompose signals into both frequency and time components to gain
a deeper insight into the sources of noise in our systems. We apply the
analysis to a long feedback experiment performed on a state-of-the-art
two-qubit system in a pair of SiMOS quantum dots. The observed correlations
serve to identify common microscopic causes of noise, as well as to elucidate
pathways for multi-qubit operation with a more scalable feedback system.
Related papers
- Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Coherent interaction-free detection of noise [0.0]
We propose interaction-free measurements as a noise-detection technique.
We explore two conceptually different schemes: the coherent and the projective realizations.
We study the signature of noise correlations in the detector's signal.
arXiv Detail & Related papers (2023-12-28T18:24:13Z) - Spatially correlated classical and quantum noise in driven qubits: The
good, the bad, and the ugly [0.0]
Correlated noise across multiple qubits poses a significant challenge for achieving scalable quantum processors.
We study the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise.
In particular, we reveal that, in the quantum limit, pure dephasing noise induces a coherent long-range two-qubit Ising interaction that correlates distant qubits.
arXiv Detail & Related papers (2023-08-06T08:34:49Z) - Entanglement-enhanced dual-comb spectroscopy [0.7340017786387767]
Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications.
We propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance.
Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
arXiv Detail & Related papers (2023-04-04T03:57:53Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - The effect of fast noise on the fidelity of trapped-ions quantum gates [0.0]
We study the effect of fast noise on the fidelity of one- and two-qubit gates in a trapped-ion system.
Our analysis can help in guiding the deign of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
arXiv Detail & Related papers (2022-08-06T19:37:00Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Fingerprints of Qubit Noise in Transient Cavity Transmission [0.0]
We study a generic two-level system with fluctuating control parameters in a photonic cavity.
We find that basic features of the noise spectral density are imprinted in the transient transmission through the cavity.
We propose a way of extracting the spectral density for arbitrary noise in a frequency band only bounded by the range of the qubit-cavity detuning.
arXiv Detail & Related papers (2022-01-21T12:37:27Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.