The effect of fast noise on the fidelity of trapped-ions quantum gates
- URL: http://arxiv.org/abs/2208.03570v1
- Date: Sat, 6 Aug 2022 19:37:00 GMT
- Title: The effect of fast noise on the fidelity of trapped-ions quantum gates
- Authors: Haim Nakav, Ran Finkelstein, Lee Peleg, Nitzan Akerman and Roee Ozeri
- Abstract summary: We study the effect of fast noise on the fidelity of one- and two-qubit gates in a trapped-ion system.
Our analysis can help in guiding the deign of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High fidelity single and multi-qubit operations compose the backbone of
quantum information processing. This fidelity is based on the ability to couple
single- or two-qubit levels in an extremely coherent and precise manner. A
necessary condition for coherent quantum evolution is a highly stable local
oscillator driving these transitions. Here we study the effect of fast noise,
that is noise at frequencies much higher than the local oscillator linewidth,
on the fidelity of one- and two-qubit gates in a trapped-ion system. We analyze
and measure the effect of fast noise on single qubit operations including
resonant $\pi$ rotations and off-resonant sideband transitions . We further
analyze the effect of fast phase noise on the Molmer-Sorensen two-qubit gate.
We find a unified and simple way to estimate the performance of all of these
operations through a single parameter given by the noise power spectral density
at the qubit response frequency. While our analysis focuses on phase noise and
on trapped-ion systems, it is relevant for other sources of fast noise as well
as for other qubit systems in which spin-like qubits are coupled by a common
bosonic field. Our analysis can help in guiding the deign of quantum hardware
platforms and gates, improving their fidelity towards fault-tolerant quantum
computing.
Related papers
- Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Controlled phase gate in exchange coupled quantum dots affected by
quasistatic charge noise [0.0]
We study the influence of quasistatic noise in quantum dot detuning on the controlled phase gate for spin qubits.
We show that an exponential decay of the sequential fidelity is still valid for the weak noise.
arXiv Detail & Related papers (2023-12-20T10:05:56Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Fully Arbitrary Control of Frequency-Bin Qubits [0.0]
We numerically establish optimal settings for multiple configurations of electro-optic phase modulators and pulse shapers.
Performance at the single-photon level is validated through the rotation of a single frequency-bin qubit to 41 points spread over the Bloch sphere.
arXiv Detail & Related papers (2020-08-17T16:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.