Machine Learning Meets Advanced Robotic Manipulation
- URL: http://arxiv.org/abs/2309.12560v1
- Date: Fri, 22 Sep 2023 01:06:32 GMT
- Title: Machine Learning Meets Advanced Robotic Manipulation
- Authors: Saeid Nahavandi, Roohallah Alizadehsani, Darius Nahavandi, Chee Peng
Lim, Kevin Kelly, Fernando Bello
- Abstract summary: The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
- Score: 48.6221343014126
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automated industries lead to high quality production, lower manufacturing
cost and better utilization of human resources. Robotic manipulator arms have
major role in the automation process. However, for complex manipulation tasks,
hard coding efficient and safe trajectories is challenging and time consuming.
Machine learning methods have the potential to learn such controllers based on
expert demonstrations. Despite promising advances, better approaches must be
developed to improve safety, reliability, and efficiency of ML methods in both
training and deployment phases. This survey aims to review cutting edge
technologies and recent trends on ML methods applied to real-world manipulation
tasks. After reviewing the related background on ML, the rest of the paper is
devoted to ML applications in different domains such as industry, healthcare,
agriculture, space, military, and search and rescue. The paper is closed with
important research directions for future works.
Related papers
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Machine Learning for Software Engineering: A Tertiary Study [13.832268599253412]
Machine learning (ML) techniques increase the effectiveness of software engineering (SE) lifecycle activities.
We systematically collected, quality-assessed, summarized, and categorized 83 reviews in ML for SE published between 2009-2022, covering 6,117 primary studies.
The SE areas most tackled with ML are software quality and testing, while human-centered areas appear more challenging for ML.
arXiv Detail & Related papers (2022-11-17T09:19:53Z) - An Automated Robotic Arm: A Machine Learning Approach [0.0]
The modern industry is rapidly shifting from manual control of systems to automation.
Computer-based systems, though feasible for improving quality and productivity, are inflexible to work with.
One such task of industrial significance is of picking and placing objects from one place to another.
arXiv Detail & Related papers (2022-01-07T10:33:01Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.