BGF-YOLO: Enhanced YOLOv8 with Multiscale Attentional Feature Fusion for Brain Tumor Detection
- URL: http://arxiv.org/abs/2309.12585v3
- Date: Sun, 13 Oct 2024 15:10:32 GMT
- Title: BGF-YOLO: Enhanced YOLOv8 with Multiscale Attentional Feature Fusion for Brain Tumor Detection
- Authors: Ming Kang, Chee-Ming Ting, Fung Fung Ting, Raphaƫl C. -W. Phan,
- Abstract summary: You Only Look Once (YOLO)-based object detectors have shown remarkable accuracy for automated brain tumor detection.
We develop a novel BGF-YOLO architecture by incorporating Bi-level routing attention, Generalized feature pyramid networks, and Fourth detecting head into YOLOv8.
BGF-YOLO gives a 4.7% absolute increase of mAP$_50$ compared to YOLOv8x, and achieves state-of-the-art on the brain tumor detection dataset Br35H.
- Score: 6.502259209532815
- License:
- Abstract: You Only Look Once (YOLO)-based object detectors have shown remarkable accuracy for automated brain tumor detection. In this paper, we develop a novel BGF-YOLO architecture by incorporating Bi-level routing attention, Generalized feature pyramid networks, and Fourth detecting head into YOLOv8. BGF-YOLO contains an attention mechanism to focus more on important features, and feature pyramid networks to enrich feature representation by merging high-level semantic features with spatial details. Furthermore, we investigate the effect of different attention mechanisms and feature fusions, detection head architectures on brain tumor detection accuracy. Experimental results show that BGF-YOLO gives a 4.7% absolute increase of mAP$_{50}$ compared to YOLOv8x, and achieves state-of-the-art on the brain tumor detection dataset Br35H. The code is available at https://github.com/mkang315/BGF-YOLO.
Related papers
- SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis [0.0]
We develop a novel SCC-YOLO architecture by integrating the SCConv attention mechanism into YOLOv9.
SCC-YOLO has reached state-of-the-art performance in brain tumor detection.
arXiv Detail & Related papers (2025-01-07T14:45:39Z) - PK-YOLO: Pretrained Knowledge Guided YOLO for Brain Tumor Detection in Multiplanar MRI Slices [6.502259209532815]
We propose a new You Only Look Once (YOLO)-based detection model that incorporates Pretrained Knowledge (PK), called PK-YOLO.
PK-YOLO is the first pretrained knowledge guided YOLO-based object detector.
We show that the proposed PK-YOLO achieves competitive performance on the multiplanar MRI brain tumor detection datasets.
arXiv Detail & Related papers (2024-10-29T07:45:59Z) - LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection [8.812471041082105]
We propose a novel model named Lightweight Shunt Matching-YOLO (LSM-YOLO), with Lightweight Adaptive Extraction (LAE) and Multipath Shunt Feature Matching (MSFM)
Experimental results demonstrate that LSM-YOLO achieves 48.6% AP on a private dataset of pancreatic tumors, 65.1% AP on the BCCD blood cell detection public dataset, and 73.0% AP on the Br35h brain tumor detection public dataset.
arXiv Detail & Related papers (2024-08-26T08:16:58Z) - Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation [74.65906322148997]
We introduce a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features.
Hyper-YOLO significantly outperforms the advanced YOLOv8-N and YOLOv9T with 12% $textval$ and 9% $APMoonLab improvements.
arXiv Detail & Related papers (2024-08-09T01:21:15Z) - YOLOv8-AM: YOLOv8 Based on Effective Attention Mechanisms for Pediatric Wrist Fracture Detection [0.0]
This research work proposes YOLOv8-AM, which incorporates the attention mechanism into the original YOLOv8 architecture.
Experimental results demonstrate that the mean Average Precision at IoU 50 (mAP 50) of the YOLOv8-AM model based on ResBlock + CBAM (ResCBAM) increased from 63.6% to 65.8%, which achieves the state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-02-14T17:18:15Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor
Detection [7.798672884591179]
We propose a novel YOLO architecture based on channel Shuffle (RCS-YOLO)
Experimental results on the brain tumor dataset Br35H show that the proposed model surpasses YOLOv6, YOLOv7, and YOLOv8 in speed and accuracy.
Our proposed RCS-YOLO achieves state-of-the-art performance on the brain tumor detection task.
arXiv Detail & Related papers (2023-07-31T05:38:17Z) - SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for
prior-informed assessment of muscle function and pathology [48.54269377408277]
We introduce the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI), that integrates hypothesis-driven priors in a data-driven Deep Learning approach.
SEMPAI performs joint learning of several tasks to enable prediction for small datasets.
SEMPAI outperforms state-of-the-art biomarkers in six of seven predictive tasks, including those with scarce data.
arXiv Detail & Related papers (2022-10-28T17:03:04Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.