Targeted Neural Architectures in Multi-Objective Frameworks for Complete Glioma Characterization from Multimodal MRI
- URL: http://arxiv.org/abs/2409.17273v3
- Date: Tue, 18 Mar 2025 15:56:39 GMT
- Title: Targeted Neural Architectures in Multi-Objective Frameworks for Complete Glioma Characterization from Multimodal MRI
- Authors: Shravan Venkatraman, Pandiyaraju V, Abeshek A, Aravintakshan S A, Pavan Kumar S, Kannan A, Madhan S,
- Abstract summary: Brain tumors cause neurological deficits, including cognitive impairment, motor dysfunction, and sensory loss.<n>Deep learning (DL) and artificial intelligence (AI) are increasingly used to assist doctors in early diagnosis through magnetic resonance imaging (MRI) scans.<n>Our research proposes targeted neural architectures within multi-objective frameworks that can localize, segment, and classify the grade of these gliomas.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain tumors result from abnormal cell growth in brain tissue. If undiagnosed, they cause neurological deficits, including cognitive impairment, motor dysfunction, and sensory loss. As tumors grow, intracranial pressure increases, potentially leading to fatal complications such as brain herniation. Early diagnosis and treatment are crucial to controlling these effects and slowing tumor progression. Deep learning (DL) and artificial intelligence (AI) are increasingly used to assist doctors in early diagnosis through magnetic resonance imaging (MRI) scans. Our research proposes targeted neural architectures within multi-objective frameworks that can localize, segment, and classify the grade of these gliomas from multimodal MRI images to solve this critical issue. Our localization framework utilizes a targeted architecture that enhances the LinkNet framework with an encoder inspired by VGG19 for better multimodal feature extraction from the tumor along with spatial and graph attention mechanisms that sharpen feature focus and inter-feature relationships. For the segmentation objective, we deployed a specialized framework using the SeResNet101 CNN model as the encoder backbone integrated into the LinkNet architecture, achieving an IoU Score of 96%. The classification objective is addressed through a distinct framework implemented by combining the SeResNet152 feature extractor with Adaptive Boosting classifier, reaching an accuracy of 98.53%. Our multi-objective approach with targeted neural architectures demonstrated promising results for complete glioma characterization, with the potential to advance medical AI by enabling early diagnosis and providing more accurate treatment options for patients.
Related papers
- Light Weight CNN for classification of Brain Tumors from MRI Images [0.0]
This study presents a convolutional neural network (CNN)-based approach for the multi-class classification of brain tumors.
We utilize a publicly available dataset containing MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor.
Experimental results demonstrate that the proposed model achieves a classification accuracy of 98.78%, indicating its potential as a diagnostic aid in clinical settings.
arXiv Detail & Related papers (2025-04-29T21:45:11Z) - Tumor Location-weighted MRI-Report Contrastive Learning: A Framework for Improving the Explainability of Pediatric Brain Tumor Diagnosis [0.0]
We train a multimodal CL architecture on 3D brain MRI scans and radiology reports to learn informative MRI representations.
We then apply the learnt image representations to improve explainability and performance of genetic marker classification of pediatric Low-grade Glioma.
arXiv Detail & Related papers (2024-11-01T14:14:17Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients.
Various deep learning-based techniques have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology.
We propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation.
arXiv Detail & Related papers (2024-05-22T02:46:26Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - Streamlining Brain Tumor Classification with Custom Transfer Learning in
MRI Images [1.534667887016089]
Brain tumors are increasingly prevalent, characterized by the uncontrolled spread of aberrant tissues in the brain.
In this study, we propose an efficient solution for classifying brain tumors from MRI images using custom transfer learning networks.
arXiv Detail & Related papers (2023-10-19T19:13:04Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
Brain tumor is one of the severe health complications which lead to decrease in life expectancy of the individuals.
Timely detection and prediction of brain tumors can be helpful to prevent death rates due to brain tumors.
Deep learning-based approaches have emerged as a promising solution to develop automated biomedical image exploration tools.
arXiv Detail & Related papers (2023-07-16T14:06:45Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Multi-modal learning for predicting the genotype of glioma [14.93152817415408]
The isocitrate dehydrogenase (IDH) gene mutation is an essential biomarker for the diagnosis and prognosis of glioma.
It is promising to better predict glioma genotype by integrating focal tumor image and geometric features with brain network features derived from MRI.
We propose a multi-modal learning framework using three separate encoders to extract features of focal tumor image, tumor geometrics and global brain networks.
arXiv Detail & Related papers (2022-03-21T10:20:04Z) - MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network
Architecture for Medical Image Analysis [71.2022403915147]
We introduce MEDUSA, a multi-scale encoder-decoder self-attention mechanism tailored for medical image analysis.
We obtain state-of-the-art performance on challenging medical image analysis benchmarks including COVIDx, RSNA RICORD, and RSNA Pneumonia Challenge.
arXiv Detail & Related papers (2021-10-12T15:05:15Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.