TrTr: A Versatile Pre-Trained Large Traffic Model based on Transformer
for Capturing Trajectory Diversity in Vehicle Population
- URL: http://arxiv.org/abs/2309.12677v3
- Date: Fri, 1 Dec 2023 04:11:11 GMT
- Title: TrTr: A Versatile Pre-Trained Large Traffic Model based on Transformer
for Capturing Trajectory Diversity in Vehicle Population
- Authors: Ruyi Feng, Zhibin Li, Bowen Liu and Yan Ding
- Abstract summary: In this study, we apply the Transformer architecture to traffic tasks, aiming to learn the diversity of trajectories within vehicle populations.
We create a data structure tailored to the attention mechanism and introduce a set of noises that correspond to recurrent-temporal demands.
The designed pre-training model demonstrates excellent performance in capturing the spatial distribution of the vehicle population.
- Score: 13.75828180340772
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding trajectory diversity is a fundamental aspect of addressing
practical traffic tasks. However, capturing the diversity of trajectories
presents challenges, particularly with traditional machine learning and
recurrent neural networks due to the requirement of large-scale parameters. The
emerging Transformer technology, renowned for its parallel computation
capabilities enabling the utilization of models with hundreds of millions of
parameters, offers a promising solution. In this study, we apply the
Transformer architecture to traffic tasks, aiming to learn the diversity of
trajectories within vehicle populations. We analyze the Transformer's attention
mechanism and its adaptability to the goals of traffic tasks, and subsequently,
design specific pre-training tasks. To achieve this, we create a data structure
tailored to the attention mechanism and introduce a set of noises that
correspond to spatio-temporal demands, which are incorporated into the
structured data during the pre-training process. The designed pre-training
model demonstrates excellent performance in capturing the spatial distribution
of the vehicle population, with no instances of vehicle overlap and an RMSE of
0.6059 when compared to the ground truth values. In the context of time series
prediction, approximately 95% of the predicted trajectories' speeds closely
align with the true speeds, within a deviation of 7.5144m/s. Furthermore, in
the stability test, the model exhibits robustness by continuously predicting a
time series ten times longer than the input sequence, delivering smooth
trajectories and showcasing diverse driving behaviors. The pre-trained model
also provides a good basis for downstream fine-tuning tasks. The number of
parameters of our model is over 50 million.
Related papers
- Crossfusor: A Cross-Attention Transformer Enhanced Conditional Diffusion Model for Car-Following Trajectory Prediction [10.814758830775727]
This study introduces a Cross-Attention Transformer Enhanced Diffusion Model (Crossfusor) specifically designed for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a robust diffusion framework, improving both the accuracy and realism of predicted trajectories.
Experimental results on the NGSIM dataset demonstrate that Crossfusor outperforms state-of-the-art models, particularly in long-term predictions.
arXiv Detail & Related papers (2024-06-17T17:35:47Z) - A Multi-Channel Spatial-Temporal Transformer Model for Traffic Flow Forecasting [0.0]
We propose a multi-channel spatial-temporal transformer model for traffic flow forecasting.
It improves the accuracy of the prediction by fusing results from different channels of traffic data.
Experimental results on six real-world datasets demonstrate that introducing a multi-channel mechanism into the temporal model enhances performance.
arXiv Detail & Related papers (2024-05-10T06:37:07Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
We propose a model that combines hybrid Transformer and self-supervised learning.
The model enhances its adaptive data augmentation by applying data augmentation techniques at the sequence-level of the traffic.
We design two self-supervised learning tasks to model the temporal and spatial dependencies, thereby improving the accuracy and ability of the model.
arXiv Detail & Related papers (2024-01-29T06:17:23Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Interpretable Machine Learning Models for Modal Split Prediction in
Transportation Systems [0.43012765978447565]
Modal split prediction in transportation networks has the potential to support network operators in managing traffic congestion and improving transit service reliability.
We focus on the problem of hourly prediction of the fraction of travelers choosing one mode of transportation over another using high-dimensional travel time data.
We employ various regularization techniques for variable selection to prevent overfitting and resolve multicollinearity issues.
arXiv Detail & Related papers (2022-03-27T02:59:00Z) - The Importance of Balanced Data Sets: Analyzing a Vehicle Trajectory
Prediction Model based on Neural Networks and Distributed Representations [0.0]
We investigate the composition of training data in vehicle trajectory prediction.
We show that the models employing our semantic vector representation outperform the numerical model when trained on an adequate data set.
arXiv Detail & Related papers (2020-09-30T20:00:11Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.