DyTTP: Trajectory Prediction with Normalization-Free Transformers
- URL: http://arxiv.org/abs/2504.05356v1
- Date: Mon, 07 Apr 2025 09:26:25 GMT
- Title: DyTTP: Trajectory Prediction with Normalization-Free Transformers
- Authors: Yunxiang Liu, Hongkuo Niu,
- Abstract summary: Transformer-based architectures have demonstrated significant promise in capturing complex robustnessity dependencies.<n>We present a two-fold approach to address these challenges.<n>First, we integrate DynamicTanh (DyT), which is the latest method to promote transformers, into the backbone, replacing traditional layer normalization.<n>We are the first work to deploy the DyT to the trajectory prediction task.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate trajectory prediction is a cornerstone for the safe operation of autonomous driving systems, where understanding the dynamic behavior of surrounding agents is crucial. Transformer-based architectures have demonstrated significant promise in capturing complex spatio-temporality dependencies. However, their reliance on normalization layers can lead to computation overhead and training instabilities. In this work, we present a two-fold approach to address these challenges. First, we integrate DynamicTanh (DyT), which is the latest method to promote transformers, into the backbone, replacing traditional layer normalization. This modification simplifies the network architecture and improves the stability of the inference. We are the first work to deploy the DyT to the trajectory prediction task. Complementing this, we employ a snapshot ensemble strategy to further boost trajectory prediction performance. Using cyclical learning rate scheduling, multiple model snapshots are captured during a single training run. These snapshots are then aggregated via simple averaging at inference time, allowing the model to benefit from diverse hypotheses without incurring substantial additional computational cost. Extensive experiments on Argoverse datasets demonstrate that our combined approach significantly improves prediction accuracy, inference speed and robustness in diverse driving scenarios. This work underscores the potential of normalization-free transformer designs augmented with lightweight ensemble techniques in advancing trajectory forecasting for autonomous vehicles.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Real-Time Motion Prediction via Heterogeneous Polyline Transformer with
Relative Pose Encoding [121.08841110022607]
Existing agent-centric methods have demonstrated outstanding performance on public benchmarks.
We introduce the K-nearest neighbor attention with relative pose encoding (KNARPE), a novel attention mechanism allowing the pairwise-relative representation to be used by Transformers.
By sharing contexts among agents and reusing the unchanged contexts, our approach is as efficient as scene-centric methods, while performing on par with state-of-the-art agent-centric methods.
arXiv Detail & Related papers (2023-10-19T17:59:01Z) - TrTr: A Versatile Pre-Trained Large Traffic Model based on Transformer
for Capturing Trajectory Diversity in Vehicle Population [13.75828180340772]
In this study, we apply the Transformer architecture to traffic tasks, aiming to learn the diversity of trajectories within vehicle populations.
We create a data structure tailored to the attention mechanism and introduce a set of noises that correspond to recurrent-temporal demands.
The designed pre-training model demonstrates excellent performance in capturing the spatial distribution of the vehicle population.
arXiv Detail & Related papers (2023-09-22T07:36:22Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
We propose two data augmentation methods customized for tracking.
First, we optimize existing random cropping via a dynamic search radius mechanism and simulation for boundary samples.
Second, we propose a token-level feature mixing augmentation strategy, which enables the model against challenges like background interference.
arXiv Detail & Related papers (2023-09-15T09:18:54Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - MSTFormer: Motion Inspired Spatial-temporal Transformer with
Dynamic-aware Attention for long-term Vessel Trajectory Prediction [0.6451914896767135]
MSTFormer is a motion inspired vessel trajectory prediction method based on Transformer.
We propose a data augmentation method to describe the spatial features and motion features of the trajectory.
Second, we propose a Multi-headed Dynamic-aware Self-attention mechanism to focus on trajectory points with frequent motion transformations.
Third, we construct a knowledge-inspired loss function to further boost the performance of the model.
arXiv Detail & Related papers (2023-03-21T02:11:37Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - PreTR: Spatio-Temporal Non-Autoregressive Trajectory Prediction
Transformer [0.9786690381850356]
We introduce a model called PRediction Transformer (PReTR) that extracts features from the multi-agent scenes by employing a factorized-temporal attention module.
It shows less computational needs than previously studied models with empirically better results.
We leverage encoder-decoder Transformer networks for parallel decoding a set of learned object queries.
arXiv Detail & Related papers (2022-03-17T12:52:23Z) - Spatial-Channel Transformer Network for Trajectory Prediction on the
Traffic Scenes [2.7955111755177695]
We present a Spatial-Channel Transformer Network for trajectory prediction with attention functions.
A channel-wise module is inserted to measure the social interaction between agents.
We find that the network achieves promising results on real-world trajectory prediction datasets on the traffic scenes.
arXiv Detail & Related papers (2021-01-27T15:03:42Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.