論文の概要: Doubly Robust Proximal Causal Learning for Continuous Treatments
- arxiv url: http://arxiv.org/abs/2309.12819v3
- Date: Mon, 11 Mar 2024 03:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 16:19:45.776354
- Title: Doubly Robust Proximal Causal Learning for Continuous Treatments
- Title(参考訳): 連続治療のための2重ロバストな近位因果学習
- Authors: Yong Wu, Yanwei Fu, Shouyan Wang, Xinwei Sun
- Abstract要約: 本稿では,カーネルベースの2倍頑健な因果学習推定器を提案する。
オラクル形式は影響関数の一貫した近似であることを示す。
次に、平均二乗誤差の観点から総合収束解析を行う。
- 参考スコア(独自算出の注目度): 56.05592840537398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proximal causal learning is a promising framework for identifying the causal
effect under the existence of unmeasured confounders. Within this framework,
the doubly robust (DR) estimator was derived and has shown its effectiveness in
estimation, especially when the model assumption is violated. However, the
current form of the DR estimator is restricted to binary treatments, while the
treatment can be continuous in many real-world applications. The primary
obstacle to continuous treatments resides in the delta function present in the
original DR estimator, making it infeasible in causal effect estimation and
introducing a heavy computational burden in nuisance function estimation. To
address these challenges, we propose a kernel-based DR estimator that can well
handle continuous treatments. Equipped with its smoothness, we show that its
oracle form is a consistent approximation of the influence function. Further,
we propose a new approach to efficiently solve the nuisance functions. We then
provide a comprehensive convergence analysis in terms of the mean square error.
We demonstrate the utility of our estimator on synthetic datasets and
real-world applications.
- Abstract(参考訳): 近位因果学習は、測定されていない共同創設者の存在下で因果効果を特定するための有望な枠組みである。
このフレームワーク内では、二重ロバスト(DR)推定器が導出され、特にモデル仮定に違反した場合に、その推定の有効性が示された。
しかし、DR推定器の現在の形態はバイナリ処理に限定され、実際の多くの応用において連続的な処理が可能である。
連続処理の主な障害は、元のDR推定器に存在するデルタ関数に存在し、因果効果の推定が不可能となり、ニュアンス関数推定において重い計算負担が生じる。
これらの課題に対処するために,カーネルベースのDR推定器を提案する。
その滑らかさを備え、そのオラクル形式は影響関数の一貫した近似であることを示す。
さらに,ニュアンス関数を効率的に解くための新しい手法を提案する。
次に,平均二乗誤差の観点から包括的収束解析を行う。
我々は,合成データセットと実世界のアプリケーションにおける推定器の有用性を実証する。
関連論文リスト
- Automatic doubly robust inference for linear functionals via calibrated debiased machine learning [0.9694940903078658]
本稿では2つの頑健な推論のためのバイアス付き機械学習推定器を提案する。
C-DML推定器は、結果回帰または線形汎函数のリース表現器が十分に推定されたときに線形性を維持する。
我々の理論的および実証的な結果は、ニュアンス関数の不一致または遅い推定によるバイアスを軽減するためにC-DMLの使用を支持する。
論文 参考訳(メタデータ) (2024-11-05T03:32:30Z) - Learning Representations of Instruments for Partial Identification of Treatment Effects [23.811079163083303]
我々は任意の(潜在的に高次元の)機器を用いて条件平均処理効果(CATE)の限界を推定する。
本稿では,楽器を離散表現空間にマッピングする手法を提案する。
我々は、潜在楽器空間のニューラルネットワーク分割を調整し、厳密な境界を学習する2段階の手順を導出する。
論文 参考訳(メタデータ) (2024-10-11T16:48:32Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Proximal Causal Learning of Conditional Average Treatment Effects [0.0]
異種治療効果を学習するための2段階損失関数を提案する。
提案手法は,市販の損失最小化機械学習手法により実装できる。
論文 参考訳(メタデータ) (2023-01-26T02:56:36Z) - Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning [59.02006924867438]
オフ政治評価と学習(OPE/L)は、オフラインの観察データを使用してより良い意思決定を行う。
近年の研究では、分散ロバストなOPE/L (DROPE/L) が提案されているが、この提案は逆正則重み付けに依存している。
KL分散不確実性集合を用いたDROPE/Lの最初のDRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-19T20:00:44Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Multiply Robust Causal Mediation Analysis with Continuous Treatments [12.196869756333797]
Tchetgen Tchetgen と Shpitser の影響関数に基づく推定器 (2012) に触発された継続的治療の設定に適した推定器を提案する。
提案手法はクロスフィッティングを用いて,ニュアンス関数の滑らかさ要件を緩和し,対象パラメータよりも遅い速度で推定できるようにする。
論文 参考訳(メタデータ) (2021-05-19T16:58:57Z) - Causal Estimation with Functional Confounders [24.54466899641308]
因果推論は、無知と肯定性の2つの基本的な仮定に依存します。
真共起値が観測データの関数として表現できる場合の因果推論について検討する。
この設定では、不可知性は満たされるが、肯定性は侵害され、因果推論は一般に不可能である。
論文 参考訳(メタデータ) (2021-02-17T02:16:21Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。