Graph Neural Network for Stress Predictions in Stiffened Panels Under
Uniform Loading
- URL: http://arxiv.org/abs/2309.13022v1
- Date: Fri, 22 Sep 2023 17:34:20 GMT
- Title: Graph Neural Network for Stress Predictions in Stiffened Panels Under
Uniform Loading
- Authors: Yuecheng Cai, Jasmin Jelovica
- Abstract summary: Graph neural network (GNN) is a type of neural network which processes data that can be represented as graphs.
In this study, we propose a novel graph embedding technique for efficient representation of 3D stiffened panels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) and deep learning (DL) techniques have gained
significant attention as reduced order models (ROMs) to computationally
expensive structural analysis methods, such as finite element analysis (FEA).
Graph neural network (GNN) is a particular type of neural network which
processes data that can be represented as graphs. This allows for efficient
representation of complex geometries that can change during conceptual design
of a structure or a product. In this study, we propose a novel graph embedding
technique for efficient representation of 3D stiffened panels by considering
separate plate domains as vertices. This approach is considered using Graph
Sampling and Aggregation (GraphSAGE) to predict stress distributions in
stiffened panels with varying geometries. A comparison between a
finite-element-vertex graph representation is conducted to demonstrate the
effectiveness of the proposed approach. A comprehensive parametric study is
performed to examine the effect of structural geometry on the prediction
performance. Our results demonstrate the immense potential of graph neural
networks with the proposed graph embedding method as robust reduced-order
models for 3D structures.
Related papers
- Probability Passing for Graph Neural Networks: Graph Structure and Representations Joint Learning [8.392545965667288]
Graph Neural Networks (GNNs) have achieved notable success in the analysis of non-Euclidean data across a wide range of domains.
To solve this problem, Latent Graph Inference (LGI) is proposed to infer a task-specific latent structure by computing similarity or edge probability of node features.
We introduce a novel method called Probability Passing to refine the generated graph structure by aggregating edge probabilities of neighboring nodes.
arXiv Detail & Related papers (2024-07-15T13:01:47Z) - Equivariant Neural Operator Learning with Graphon Convolution [12.059797539633506]
We propose a general architecture that combines the learning coefficient scheme with a residual operator layer for learning mappings between continuous functions in the 3D Euclidean space.
arXiv Detail & Related papers (2023-11-17T23:28:22Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
We present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms.
We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms.
arXiv Detail & Related papers (2022-09-11T14:46:38Z) - Dense Graph Convolutional Neural Networks on 3D Meshes for 3D Object
Segmentation and Classification [0.0]
We present new designs of graph convolutional neural networks (GCNs) on 3D meshes for 3D object classification and segmentation.
We use the faces of the mesh as basic processing units and represent a 3D mesh as a graph where each node corresponds to a face.
arXiv Detail & Related papers (2021-06-30T02:17:16Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.