Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning
- URL: http://arxiv.org/abs/2003.07729v1
- Date: Sun, 15 Mar 2020 02:33:21 GMT
- Title: Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning
- Authors: Vassilis N. Ioannidis, Antonio G. Marques, Georgios B. Giannakis
- Abstract summary: This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
- Score: 74.05478502080658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The era of "data deluge" has sparked renewed interest in graph-based learning
methods and their widespread applications ranging from sociology and biology to
transportation and communications. In this context of graph-aware methods, the
present paper introduces a tensor-graph convolutional network (TGCN) for
scalable semi-supervised learning (SSL) from data associated with a collection
of graphs, that are represented by a tensor. Key aspects of the novel TGCN
architecture are the dynamic adaptation to different relations in the tensor
graph via learnable weights, and the consideration of graph-based regularizers
to promote smoothness and alleviate over-parameterization. The ultimate goal is
to design a powerful learning architecture able to: discover complex and highly
nonlinear data associations, combine (and select) multiple types of relations,
scale gracefully with the graph size, and remain robust to perturbations on the
graph edges. The proposed architecture is relevant not only in applications
where the nodes are naturally involved in different relations (e.g., a
multi-relational graph capturing family, friendship and work relations in a
social network), but also in robust learning setups where the graph entails a
certain level of uncertainty, and the different tensor slabs correspond to
different versions (realizations) of the nominal graph. Numerical tests
showcase that the proposed architecture achieves markedly improved performance
relative to standard GCNs, copes with state-of-the-art adversarial attacks, and
leads to remarkable SSL performance over protein-to-protein interaction
networks.
Related papers
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
We propose a novel knowledge graph that incorporates tensor decomposition within the aggregation function of Graph Conalvolution Network (R-GCN)
Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types.
We adopt a training strategy inspired by contrastive learning to relieve the training limitation of the 1-k-k encoder method inherent in handling vast graphs.
arXiv Detail & Related papers (2022-12-11T19:07:34Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
We present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events.
Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient.
arXiv Detail & Related papers (2020-06-18T16:06:18Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Affinity Graph Supervision for Visual Recognition [35.35959846458965]
We propose a principled method to supervise the learning of weights in affinity graphs.
Our affinity supervision improves relationship recovery between objects, even without manually annotated relationship labels.
We show that affinity learning can also be applied to graphs built from mini-batches, for neural network training.
arXiv Detail & Related papers (2020-03-19T23:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.