Robotic Offline RL from Internet Videos via Value-Function Pre-Training
- URL: http://arxiv.org/abs/2309.13041v1
- Date: Fri, 22 Sep 2023 17:59:14 GMT
- Title: Robotic Offline RL from Internet Videos via Value-Function Pre-Training
- Authors: Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh, Manan Tomar,
Quan Vuong, Yevgen Chebotar, Sergey Levine, Aviral Kumar
- Abstract summary: We develop a system for leveraging large-scale human video datasets in robotic offline RL.
We show that value learning on video datasets learns representations more conducive to downstream robotic offline RL than other approaches.
- Score: 67.44673316943475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-training on Internet data has proven to be a key ingredient for broad
generalization in many modern ML systems. What would it take to enable such
capabilities in robotic reinforcement learning (RL)? Offline RL methods, which
learn from datasets of robot experience, offer one way to leverage prior data
into the robotic learning pipeline. However, these methods have a "type
mismatch" with video data (such as Ego4D), the largest prior datasets available
for robotics, since video offers observation-only experience without the action
or reward annotations needed for RL methods. In this paper, we develop a system
for leveraging large-scale human video datasets in robotic offline RL, based
entirely on learning value functions via temporal-difference learning. We show
that value learning on video datasets learns representations that are more
conducive to downstream robotic offline RL than other approaches for learning
from video data. Our system, called V-PTR, combines the benefits of
pre-training on video data with robotic offline RL approaches that train on
diverse robot data, resulting in value functions and policies for manipulation
tasks that perform better, act robustly, and generalize broadly. On several
manipulation tasks on a real WidowX robot, our framework produces policies that
greatly improve over prior methods. Our video and additional details can be
found at https://dibyaghosh.com/vptr/
Related papers
- Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
Recent advances in robot learning have shown promise in enabling robots to perform manipulation tasks.
One of the key contributing factors to this progress is the scale of robot data used to train the models.
We propose an alternative route and leverage text-to-image foundation models widely used in computer vision and natural language processing.
arXiv Detail & Related papers (2023-02-22T18:47:51Z) - Real World Offline Reinforcement Learning with Realistic Data Source [33.7474988142367]
offline reinforcement learning (ORL) holds great promise for robot learning due to its ability to learn from arbitrary pre-generated experience.
Current ORL benchmarks are almost entirely in simulation and utilize contrived datasets like replay buffers of online RL agents or sub-optimal trajectories.
In this work (Real-ORL), we posit that data collected from safe operations of closely related tasks are more practical data sources for real-world robot learning.
arXiv Detail & Related papers (2022-10-12T17:57:05Z) - Pre-Training for Robots: Offline RL Enables Learning New Tasks from a
Handful of Trials [97.95400776235736]
We present a framework based on offline RL that attempts to effectively learn new tasks.
It combines pre-training on existing robotic datasets with rapid fine-tuning on a new task, with as few as 10 demonstrations.
To our knowledge, PTR is the first RL method that succeeds at learning new tasks in a new domain on a real WidowX robot.
arXiv Detail & Related papers (2022-10-11T06:30:53Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.