Large Language Models Are Also Good Prototypical Commonsense Reasoners
- URL: http://arxiv.org/abs/2309.13165v1
- Date: Fri, 22 Sep 2023 20:07:24 GMT
- Title: Large Language Models Are Also Good Prototypical Commonsense Reasoners
- Authors: Chenin Li, Qianglong Chen, Yin Zhang, Yifei Zhang, Hongxiang Yao
- Abstract summary: Traditional fine-tuning approaches can be resource-intensive and potentially compromise a model's generalization capacity.
We draw inspiration from the outputs of large models for tailored tasks and semi-automatically developed a set of novel prompts.
With better designed prompts we can achieve the new state-of-art(SOTA) on the ProtoQA leaderboard.
- Score: 11.108562540123387
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Commonsense reasoning is a pivotal skill for large language models, yet it
presents persistent challenges in specific tasks requiring this competence.
Traditional fine-tuning approaches can be resource-intensive and potentially
compromise a model's generalization capacity. Furthermore, state-of-the-art
language models like GPT-3.5 and Claude are primarily accessible through API
calls, which makes fine-tuning models challenging. To address these challenges,
we draw inspiration from the outputs of large models for tailored tasks and
semi-automatically developed a set of novel prompts from several perspectives,
including task-relevance, supportive evidence generation (e.g. chain-of-thought
and knowledge), diverse path decoding to aid the model. Experimental results on
ProtoQA dataset demonstrate that with better designed prompts we can achieve
the new state-of-art(SOTA) on the ProtoQA leaderboard, improving the Max
Answer@1 score by 8%, Max Incorrect@1 score by 4% (breakthrough 50% for the
first time) compared to the previous SOTA model and achieved an improvement on
StrategyQA and CommonsenseQA2.0 (3% and 1%, respectively). Furthermore, with
the generated Chain-of-Thought and knowledge, we can improve the
interpretability of the model while also surpassing the previous SOTA models.
We hope that our work can provide insight for the NLP community to develop
better prompts and explore the potential of large language models for more
complex reasoning tasks.
Related papers
- Eureka: Evaluating and Understanding Large Foundation Models [23.020996995362104]
We present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings.
We conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison.
arXiv Detail & Related papers (2024-09-13T18:01:49Z) - INSTRUCTEVAL: Towards Holistic Evaluation of Instruction-Tuned Large
Language Models [39.46610170563634]
INSTRUCTEVAL is a more comprehensive evaluation suite designed specifically for instruction-tuned large language models.
We take a holistic approach to analyze various factors affecting model performance, including the pretraining foundation, instruction-tuning data, and training methods.
Our findings reveal that the quality of instruction data is the most crucial factor in scaling model performance.
arXiv Detail & Related papers (2023-06-07T20:12:29Z) - Chain-of-Thought Hub: A Continuous Effort to Measure Large Language
Models' Reasoning Performance [35.38549845444575]
Chain-of-Thought Hub is an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
arXiv Detail & Related papers (2023-05-26T23:46:42Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Plex: Towards Reliability using Pretrained Large Model Extensions [69.13326436826227]
We develop ViT-Plex and T5-Plex, pretrained large model extensions for vision and language modalities, respectively.
Plex greatly improves the state-of-the-art across reliability tasks, and simplifies the traditional protocol.
We demonstrate scaling effects over model sizes up to 1B parameters and pretraining dataset sizes up to 4B examples.
arXiv Detail & Related papers (2022-07-15T11:39:37Z) - ANNA: Enhanced Language Representation for Question Answering [5.713808202873983]
We show how approaches affect performance individually and that the approaches are jointly considered in pre-training models.
We propose an extended pre-training task, and a new neighbor-aware mechanism that attends neighboring tokens more to capture the richness of context for pre-training language modeling.
Our best model achieves new state-of-the-art results of 95.7% F1 and 90.6% EM on SQuAD 1.1 and also outperforms existing pre-trained language models such as RoBERTa, ALBERT, ELECTRA, and XLNet.
arXiv Detail & Related papers (2022-03-28T05:26:52Z) - ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language
Understanding and Generation [25.430130072811075]
We propose a unified framework named ERNIE 3.0 for pre-training large-scale knowledge enhanced models.
It fuses auto-regressive network and auto-encoding network, so that the trained model can be easily tailored for both natural language understanding and generation tasks.
We trained the model with 10 billion parameters on a 4TB corpus consisting of plain texts and a large-scale knowledge graph.
arXiv Detail & Related papers (2021-07-05T16:54:59Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.