Eureka: Evaluating and Understanding Large Foundation Models
- URL: http://arxiv.org/abs/2409.10566v1
- Date: Fri, 13 Sep 2024 18:01:49 GMT
- Title: Eureka: Evaluating and Understanding Large Foundation Models
- Authors: Vidhisha Balachandran, Jingya Chen, Neel Joshi, Besmira Nushi, Hamid Palangi, Eduardo Salinas, Vibhav Vineet, James Woffinden-Luey, Safoora Yousefi,
- Abstract summary: We present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings.
We conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison.
- Score: 23.020996995362104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.
Related papers
- LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
We propose LiveXiv: a scalable evolving live benchmark based on scientific ArXiv papers.
LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs.
We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities.
arXiv Detail & Related papers (2024-10-14T17:51:23Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models [13.532180752491954]
We demonstrate a dramatic breakdown of function and reasoning capabilities of state-of-the-art models trained at the largest available scales.
The breakdown is dramatic, as models show strong fluctuations across even slight problem variations that should not affect problem solving.
We take these initial observations to stimulate urgent re-assessment of the claimed capabilities of current generation of Large Language Models.
arXiv Detail & Related papers (2024-06-04T07:43:33Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Vision Superalignment: Weak-to-Strong Generalization for Vision
Foundation Models [55.919653720979824]
This paper focuses on the concept of weak-to-strong generalization, which involves using a weaker model to supervise a stronger one.
We introduce a novel and adaptively adjustable loss function for weak-to-strong supervision.
Our approach not only exceeds the performance benchmarks set by strong-to-strong generalization but also surpasses the outcomes of fine-tuning strong models with whole datasets.
arXiv Detail & Related papers (2024-02-06T06:30:34Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Operationalizing Specifications, In Addition to Test Sets for Evaluating
Constrained Generative Models [17.914521288548844]
We argue that the scale of generative models could be exploited to raise the abstraction level at which evaluation itself is conducted.
Our recommendations are based on leveraging specifications as a powerful instrument to evaluate generation quality.
arXiv Detail & Related papers (2022-11-19T06:39:43Z) - Do Vision-and-Language Transformers Learn Grounded Predicate-Noun
Dependencies? [0.06299766708197882]
We create a new task targeted at evaluating understanding of predicate-noun dependencies in a controlled setup.
We evaluate a range of state-of-the-art models and find that their performance on the task varies considerably.
This study highlights that targeted and controlled evaluations are a crucial step for a precise and rigorous test of the multimodal knowledge of vision-and-language models.
arXiv Detail & Related papers (2022-10-21T16:07:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.