Effective Distillation of Table-based Reasoning Ability from LLMs
- URL: http://arxiv.org/abs/2309.13182v2
- Date: Mon, 25 Mar 2024 06:49:16 GMT
- Title: Effective Distillation of Table-based Reasoning Ability from LLMs
- Authors: Bohao Yang, Chen Tang, Kun Zhao, Chenghao Xiao, Chenghua Lin,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks.
Their enormous parameter size and extremely high requirements for compute power pose challenges for their practical deployment.
Recent research has revealed that specific capabilities of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation.
- Score: 23.35522261002175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, their enormous parameter size and extremely high requirements for compute power pose challenges for their practical deployment. Recent research has revealed that specific capabilities of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation. Some studies explore the potential of leveraging LLMs to perform table-based reasoning. However, there has been no prior work focusing on table reasoning skills in smaller models specifically tailored for scientific table-to-text generation tasks. In this paper, we propose a novel table-based reasoning distillation approach, with the aim of distilling LLMs into tailored smaller models. Our experimental results have shown that a 220 million parameter model (Flan-T5-base) fine-tuned using distilled data, not only achieves a significant improvement compared to traditionally fine-tuned baselines, but also surpasses specific LLMs on a scientific table-to-text generation dataset. Our code is available at https://github.com/Bernard-Yang/DistillTableCoT.
Related papers
- LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - A Survey of Table Reasoning with Large Language Models [55.2326738851157]
Using Large Language Models (LLMs) has become the mainstream method for table reasoning.
We analyze the mainstream techniques used to improve table reasoning performance in the LLM era.
We provide research directions from both the improvement of existing methods and the expansion of practical applications.
arXiv Detail & Related papers (2024-02-13T07:17:52Z) - Are Large Language Models Table-based Fact-Checkers? [18.921379889551687]
Table-based Fact Verification (TFV) aims to extract the entailment relation between statements and structured tables.
Existing TFV methods based on small-scaled models suffer from insufficient labeled data and weak zero-shot ability.
Large Language Models (LLMs) have shown powerful zero-shot and in-context learning abilities.
arXiv Detail & Related papers (2024-02-04T15:52:59Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Improving Small Language Models on PubMedQA via Generative Data
Augmentation [4.96649519549027]
Large Language Models (LLMs) have made remarkable advancements in the field of natural language processing.
Small Language Models (SLMs) are known for their efficiency, but they often struggle with limited capacity and training data.
We introduce a novel method aimed at improving SLMs in the medical domain using LLM-based generative data augmentation.
arXiv Detail & Related papers (2023-05-12T23:49:23Z) - Distilling Step-by-Step! Outperforming Larger Language Models with Less
Training Data and Smaller Model Sizes [91.58845026796149]
We introduce Distilling step-by-step, a new mechanism that trains small models that outperform large language models.
We present three findings across 4 NLP benchmarks.
arXiv Detail & Related papers (2023-05-03T17:50:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.