Improving Small Language Models on PubMedQA via Generative Data
Augmentation
- URL: http://arxiv.org/abs/2305.07804v4
- Date: Tue, 1 Aug 2023 20:27:56 GMT
- Title: Improving Small Language Models on PubMedQA via Generative Data
Augmentation
- Authors: Zhen Guo, Peiqi Wang, Yanwei Wang, Shangdi Yu
- Abstract summary: Large Language Models (LLMs) have made remarkable advancements in the field of natural language processing.
Small Language Models (SLMs) are known for their efficiency, but they often struggle with limited capacity and training data.
We introduce a novel method aimed at improving SLMs in the medical domain using LLM-based generative data augmentation.
- Score: 4.96649519549027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have made remarkable advancements in the field
of natural language processing. However, their increasing size poses challenges
in terms of computational cost. On the other hand, Small Language Models (SLMs)
are known for their efficiency, but they often struggle with limited capacity
and training data, especially in specific domains. In this paper, we introduce
a novel method aimed at improving SLMs in the medical domain using LLM-based
generative data augmentation. The objective of our approach is to develop more
efficient and capable models that are specifically tailored for specialized
applications. Through experiments conducted on the PubMedQA dataset, we
demonstrate the effectiveness of LLMs in refining and diversifying existing
question-answer pairs. This refinement process leads to improved performance in
a significantly smaller model after fine-tuning. Notably, our best SLM, with
under 1.6 billion parameters, outperforms the few-shot GPT-4 on the PubMedQA
dataset. Our code and generated data are publicly available to facilitate
further explorations.
Related papers
- Enhancing SLM via ChatGPT and Dataset Augmentation [0.3844771221441211]
We employ knowledge distillation-based techniques and synthetic dataset augmentation to bridge the performance gap between large language models (LLMs) and small language models (SLMs)
Our methods involve two forms of rationale generation--information extraction and informed reasoning--to enrich the ANLI dataset.
Our findings reveal that the incorporation of synthetic rationales significantly improves the model's ability to comprehend natural language, leading to 1.3% and 2.3% higher classification accuracy, respectively, on the ANLI dataset.
arXiv Detail & Related papers (2024-09-19T09:24:36Z) - Parameter Efficient Diverse Paraphrase Generation Using Sequence-Level Knowledge Distillation [0.0]
The field of Natural Language Generation (NLG) has experienced an exponential surge, largely due to the introduction of Large Language Models (LLMs)
These models have exhibited the most effective performance in a range of domains within the Natural Language Processing and Generation domains.
However, their application in domain-specific tasks, such as paraphrasing, presents significant challenges.
arXiv Detail & Related papers (2024-04-19T02:59:09Z) - Data Augmentation using Large Language Models: Data Perspectives, Learning Paradigms and Challenges [47.45993726498343]
Data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection.
This survey explores the transformative impact of large language models (LLMs) on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond.
arXiv Detail & Related papers (2024-03-05T14:11:54Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
We introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations.
Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases.
arXiv Detail & Related papers (2024-02-09T11:23:14Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- Composition to Augment Language Models -- introduces cross-attention between models to compose their representations and enable new capabilities.
We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English.
When PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks.
arXiv Detail & Related papers (2024-01-04T18:53:01Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
We show that it is possible to significantly improve the performance of Large Language Models by selectively removing higher-order components of their weight matrices.
This simple intervention, which we call LAyer-SElective Rank reduction (LASER), can be done on a model after training has completed.
We show extensive experiments demonstrating the generality of this finding across language models and datasets.
arXiv Detail & Related papers (2023-12-21T03:51:08Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.