論文の概要: Statistical Hypothesis Testing for Information Value (IV)
- arxiv url: http://arxiv.org/abs/2309.13183v1
- Date: Fri, 22 Sep 2023 21:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 21:44:38.285893
- Title: Statistical Hypothesis Testing for Information Value (IV)
- Title(参考訳): 情報価値に関する統計的仮説検定(iv)
- Authors: Helder Rojas, Cirilo Alvarez and Nilton Rojas
- Abstract要約: 情報値(IV)は、モデリングフェーズの前に特徴選択を行う一般的な手法である。
本稿では,IV の理論的枠組みを提案し,予測力をテストするための非パラメトリック仮説テストを提案する。
シミュレーションデータを用いて,テスト統計を効率的に計算し,その性能について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information value (IV) is a quite popular technique for feature selection
prior to the modeling phase. There are practical criteria, but at the same time
mysterious and lacking theoretical arguments, based on the IV, to decide if a
predictor has sufficient predictive power to be considered in the modeling
phase. However, the mathematical development and statistical inference methods
for this technique is almost non-existent in the literature. In this work we
present a theoretical framework for the IV and propose a non-parametric
hypothesis test to test the predictive power. We show how to efficiently
calculate the test statistic and study its performance on simulated data.
Additionally, we apply our test on bank fraud data and provide a Python library
where we implement our results.
- Abstract(参考訳): 情報の価値(IV)は、モデリングフェーズの前に特徴の選択を行うための非常に一般的なテクニックです。
実用的な基準はあるが、同時にivに基づいて、モデリングフェーズで考慮すべき十分な予測能力があるかどうかを決定するための、謎めいた理論的な議論が欠如している。
しかし、この手法の数学的発展と統計的推論法は文献にはほとんど存在しない。
本研究は,IVの理論的枠組みを提示し,予測力をテストするための非パラメトリック仮説テストを提案する。
シミュレーションデータを用いて,テスト統計を効率的に計算し,その性能について検討する。
さらに、銀行詐欺データにテストを適用し、結果を実装するためのpythonライブラリを提供します。
関連論文リスト
- An Efficient Permutation-Based Kernel Two-Sample Test [12.331562761756679]
2サンプル仮説テストは統計学と機械学習の基本的な問題である。
本研究では,最大平均誤差(MMD)のNystr "om approxation"を用いて,計算効率よく実用的なテストアルゴリズムを設計する。
論文 参考訳(メタデータ) (2025-02-19T09:22:48Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - Toward Generalizable Machine Learning Models in Speech, Language, and
Hearing Sciences: Estimating Sample Size and Reducing Overfitting [1.8416014644193064]
本研究ではモンテカルロシミュレーションを用いて,採用したクロスバリデーション法と特徴の離散パワーの相互作用を定量化する。
単一ホールドアウトで必要なサンプルサイズは、ネストしたクロスバリデーションを使用する場合、必要なものよりも50%高い可能性がある。
論文 参考訳(メタデータ) (2023-08-22T05:14:42Z) - Learning Robust Statistics for Simulation-based Inference under Model
Misspecification [23.331522354991527]
本稿では,シミュレーションに基づく推論手法の異なるクラスにまたがって機能するモデル不特定性を扱うための,最初の一般的なアプローチを提案する。
提案手法は,モデルが適切に特定された場合の精度を保ちながら,不特定シナリオにおいて頑健な推論をもたらすことを示す。
論文 参考訳(メタデータ) (2023-05-25T09:06:26Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
列内の異なる値の数(NDV)を推定することは、データベースシステムにおける多くのタスクに有用である。
本研究では、ランダム(オンライン/オフライン)サンプルから正確なNDV推定を導出する方法に焦点を当てる。
教師付き学習フレームワークにおいて,NDV推定タスクを定式化し,モデルを推定対象として学習することを提案する。
論文 参考訳(メタデータ) (2022-02-06T15:42:04Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
この記事では、このトピックの最先端に関する総合的な研究について紹介する。
さまざまなテクニックの制限、メリット、コネクション、差異を強調します。
また、不適切な事前利用の問題や解決法についても述べる。
論文 参考訳(メタデータ) (2020-05-17T18:31:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。