Real3D-AD: A Dataset of Point Cloud Anomaly Detection
- URL: http://arxiv.org/abs/2309.13226v3
- Date: Mon, 23 Oct 2023 05:46:10 GMT
- Title: Real3D-AD: A Dataset of Point Cloud Anomaly Detection
- Authors: Jiaqi Liu, Guoyang Xie, Ruitao Chen, Xinpeng Li, Jinbao Wang, Yong
Liu, Chengjie Wang, Feng Zheng
- Abstract summary: We introduce Real3D-AD, a challenging high-precision point cloud anomaly detection dataset.
With 1,254 high-resolution 3D items from forty thousand to millions of points for each item, Real3D-AD is the largest dataset for high-precision 3D industrial anomaly detection.
We present a comprehensive benchmark for Real3D-AD, revealing the absence of baseline methods for high-precision point cloud anomaly detection.
- Score: 75.56719157477661
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: High-precision point cloud anomaly detection is the gold standard for
identifying the defects of advancing machining and precision manufacturing.
Despite some methodological advances in this area, the scarcity of datasets and
the lack of a systematic benchmark hinder its development. We introduce
Real3D-AD, a challenging high-precision point cloud anomaly detection dataset,
addressing the limitations in the field. With 1,254 high-resolution 3D items
from forty thousand to millions of points for each item, Real3D-AD is the
largest dataset for high-precision 3D industrial anomaly detection to date.
Real3D-AD surpasses existing 3D anomaly detection datasets available regarding
point cloud resolution (0.0010mm-0.0015mm), 360 degree coverage and perfect
prototype. Additionally, we present a comprehensive benchmark for Real3D-AD,
revealing the absence of baseline methods for high-precision point cloud
anomaly detection. To address this, we propose Reg3D-AD, a registration-based
3D anomaly detection method incorporating a novel feature memory bank that
preserves local and global representations. Extensive experiments on the
Real3D-AD dataset highlight the effectiveness of Reg3D-AD. For reproducibility
and accessibility, we provide the Real3D-AD dataset, benchmark source code, and
Reg3D-AD on our website:https://github.com/M-3LAB/Real3D-AD.
Related papers
- PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection [13.60524473223155]
This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects.
PointAD renders 3D anomalies into multiple 2D renderings and projects them back into 3D space.
Our model can directly integrate RGB information, further enhancing the understanding of 3D anomalies in a plug-and-play manner.
arXiv Detail & Related papers (2024-10-01T01:40:22Z) - R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection [12.207437451118036]
3D anomaly detection plays a crucial role in monitoring parts for localized inherent defects in precision manufacturing.
Embedding-based and reconstruction-based approaches are among the most popular and successful methods.
We propose R3D-AD, reconstructing anomalous point clouds by diffusion model for precise 3D anomaly detection.
arXiv Detail & Related papers (2024-07-15T16:10:58Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via
3D Anomaly Synthesis and A Self-Supervised Learning Network [22.81108868492533]
We propose a 3D anomaly synthesis pipeline to adapt existing large-scale 3Dmodels for 3D anomaly detection.
Anomaly-ShapeNet consists of 1600 point cloud samples under 40 categories, which provides a rich and varied collection of data.
We also propose a self-supervised method, i.e., Iterative Mask Reconstruction Network (IMRNet), to enable scalable representation learning for 3D anomaly localization.
arXiv Detail & Related papers (2023-11-25T01:45:09Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors.
Small, distant, and incomplete objects with sparse or few points are often hard to detect.
We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space.
arXiv Detail & Related papers (2022-11-23T16:01:06Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.